A 3-Dimensional Numerical Thermal Analysis for A Vertical Double U-Tube Ground-Coupled Heat Pump

A. Tarrad
{"title":"A 3-Dimensional Numerical Thermal Analysis for A Vertical Double U-Tube Ground-Coupled Heat Pump","authors":"A. Tarrad","doi":"10.18178/ijcea.2021.12.2.789","DOIUrl":null,"url":null,"abstract":"The ground heat exchanger plays a major role in the thermal performance and economic optimization of the ground-coupled heat pump. The present study focuses on the effect of the borehole size and the grout and soil thermal properties on the thermal assessment of these heat exchangers. A double U-tube heat exchanger was studied numerically by the COMSOL Multiphysics 5.4 software in a 3-dimensional discretization model. The double U-tube was circuited as a parallel flow arrangement and situated in a parallel configuration (PFPD) deep in the borehole. The grout and ground thermal conductivities were selected in the range of (0.73-2.0) W/m.K and (1.24-2.8) W/m.K respectively. The results revealed that the ground thermal conductivity showed a more pronounced influence on the thermal performance of the ground heat exchanger and with less extent for the grouting one. Increasing the grout filling thermal conductivity from (0.73) W/m.K to (2.0) W/m.K at a fixed ground thermal conductivity of (2.4) W/m.K has augmented the heat transfer rate by (10) %. The heat transfer rate of the ground heat exchanger exhibited marked enhancement as much as double when the ground thermal conductivity was increased from (1.24) W/m.K to (2.8) W/m.K at fixed grout thermal conductivity range of (0.78-2.0) W/m.K. It has been verified that increasing the borehole size has a negligible effect on the ground heat exchanger thermal performance when a grout with a high thermal conductivity was utilized in the ranged of examined configurations. The steady-state numerical analysis model outcomes of the present work could be implemented for the preliminary borehole design for a ground heat exchanger.","PeriodicalId":13949,"journal":{"name":"International Journal of Chemical Engineering and Applications","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijcea.2021.12.2.789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ground heat exchanger plays a major role in the thermal performance and economic optimization of the ground-coupled heat pump. The present study focuses on the effect of the borehole size and the grout and soil thermal properties on the thermal assessment of these heat exchangers. A double U-tube heat exchanger was studied numerically by the COMSOL Multiphysics 5.4 software in a 3-dimensional discretization model. The double U-tube was circuited as a parallel flow arrangement and situated in a parallel configuration (PFPD) deep in the borehole. The grout and ground thermal conductivities were selected in the range of (0.73-2.0) W/m.K and (1.24-2.8) W/m.K respectively. The results revealed that the ground thermal conductivity showed a more pronounced influence on the thermal performance of the ground heat exchanger and with less extent for the grouting one. Increasing the grout filling thermal conductivity from (0.73) W/m.K to (2.0) W/m.K at a fixed ground thermal conductivity of (2.4) W/m.K has augmented the heat transfer rate by (10) %. The heat transfer rate of the ground heat exchanger exhibited marked enhancement as much as double when the ground thermal conductivity was increased from (1.24) W/m.K to (2.8) W/m.K at fixed grout thermal conductivity range of (0.78-2.0) W/m.K. It has been verified that increasing the borehole size has a negligible effect on the ground heat exchanger thermal performance when a grout with a high thermal conductivity was utilized in the ranged of examined configurations. The steady-state numerical analysis model outcomes of the present work could be implemented for the preliminary borehole design for a ground heat exchanger.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
垂直双u型管地耦合热泵的三维数值热分析
地面换热器对地联热泵的热工性能和经济性优化起着重要的作用。研究了钻孔尺寸、泥浆和土壤热性质对换热器热性能评价的影响。采用COMSOL Multiphysics 5.4软件对双u型管换热器进行了三维离散化数值模拟。双u型管作为平行流动布置进行循环,并位于井眼深处的平行结构(PFPD)中。浆液和地面导热系数选择在(0.73-2.0)W/m范围内。K和(1.24-2.8)W/m。K分别。结果表明:地面导热系数对地下换热器热性能的影响较为显著,对注浆换热器热性能的影响较小;灌浆导热系数由(0.73)W/m提高。K到(2.0)W/m。K在固定的地面导热系数为(2.4)W/m时。K使传热速率增加了(10)%。当地面导热系数由(1.24)W/m增加到(1.24)W/m时,换热器的换热速率显著提高了一倍。K至(2.8)W/m。K固定时浆液导热系数范围为(0.78 ~ 2.0)W/m.K。已经证实,当在测试的配置范围内使用具有高导热性的浆液时,增加钻孔尺寸对地面热交换器热性能的影响可以忽略不计。本文稳态数值分析模型的结果可用于地下换热器的初步钻孔设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Antioxidant Property from Water Extraction of Garcia Mangostana Using Response Surface Methodology Effect of Blumea Balsamifera Extract on the Kinetics of Calcium Oxalate Monohydrate (COM) Dissolution Biotransformation of Lignocellulosic Biomass Hydrolysate into Polyhydroxybutyrate Biopolymer via Ralstonia Eutropha Molecularly Imprinted Polymer (MIP)-Based Electrochemical Sensor for Determination of Amyloid β-42 in Alzheimer’s Disease A Molecularly Imprinted Polymer-Based Electrochemical Sensor for Heart Failure Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1