Niosomes As an Ideal Drug Delivery System

Vikram B. Madane, N. Aloorkar, V. Mokale
{"title":"Niosomes As an Ideal Drug Delivery System","authors":"Vikram B. Madane, N. Aloorkar, V. Mokale","doi":"10.47363/jnsrr/2021(3)123","DOIUrl":null,"url":null,"abstract":"Niosomes are a non-ionic spherical surfactant that is biodegradable, non-toxic, more durable, and cost effective as compare to liposomes. Through niosomes delivery of both hydrophilic and liophilic drug can be achieve very constructively. To achieve targeted drug delivery, drug binds to receptor site and then we can get the therapeutic action without attaching to other sites to prevent the undesirable or side effect of active pharmaceutical ingredient to the systemic circulation, hence niosomes is a very novel drug delivery system by which we can achieve very safe drug delivery at the site of action needed with high efficacy. In this review paper we try to compile all the information related with niosomes like introduction, structure, composition advantages, types, disadvantage, preparation methods, factor affecting, evaluation studies, applications of niosomes, difference between liposomes and niosomes, current available marketed formulation and patents, final conclusion and at last future perspective of niosomes.","PeriodicalId":16545,"journal":{"name":"Journal of Nanosciences Research & Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanosciences Research & Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47363/jnsrr/2021(3)123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Niosomes are a non-ionic spherical surfactant that is biodegradable, non-toxic, more durable, and cost effective as compare to liposomes. Through niosomes delivery of both hydrophilic and liophilic drug can be achieve very constructively. To achieve targeted drug delivery, drug binds to receptor site and then we can get the therapeutic action without attaching to other sites to prevent the undesirable or side effect of active pharmaceutical ingredient to the systemic circulation, hence niosomes is a very novel drug delivery system by which we can achieve very safe drug delivery at the site of action needed with high efficacy. In this review paper we try to compile all the information related with niosomes like introduction, structure, composition advantages, types, disadvantage, preparation methods, factor affecting, evaluation studies, applications of niosomes, difference between liposomes and niosomes, current available marketed formulation and patents, final conclusion and at last future perspective of niosomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Niosomes是一种理想的给药系统
乳质体是一种非离子球形表面活性剂,与脂质体相比,它具有可生物降解、无毒、耐用和成本效益高的特点。通过乳小体,亲水性和亲油性药物的递送都可以很有建设性地实现。为了实现靶向给药,药物与受体位点结合,在不附着于其他部位的情况下获得治疗作用,防止药物活性成分对体循环产生不良或副作用,因此niosomes是一种非常新颖的给药系统,我们可以通过它在需要的作用部位实现非常安全且高效的给药。本文综述了乳质体的介绍、结构、组成优势、类型、缺点、制备方法、影响因素、评价研究、应用、脂质体与乳质体的区别、目前可获得的市场制剂和专利、最后的结论和未来的展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Porphyrins based Nanomaterials, the Future of Science Synthesis and Characterization of Zinc Telluride Quantum Dots: Studies on the Structural and Optical Properties Improved Performance of MoS2 FETs using AlN/Al2 O3 dielectric and Plasma Enhanced Atomic Layer Deposition (PEALD) Nanotechnology and Treatment of Covid-19 Carbon Nanotubes and its Application in Nanotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1