A robust 3D mesh watermarking algorithm utilizing fuzzy C-Means clustering

Ola M. El Zein , Lamiaa M. El Bakrawy , Neveen I. Ghali
{"title":"A robust 3D mesh watermarking algorithm utilizing fuzzy C-Means clustering","authors":"Ola M. El Zein ,&nbsp;Lamiaa M. El Bakrawy ,&nbsp;Neveen I. Ghali","doi":"10.1016/j.fcij.2017.10.007","DOIUrl":null,"url":null,"abstract":"<div><p>A new robust 3D watermarking algorithm utilizing Fuzzy C-Means (FCM) clustering technique is presented. FCM clusters 3D mesh vertices into suitable and unsuitable choices to insert the watermark without occasioning visible deformation, and also it is tough for the attacker to determine places of the watermark insertion. Two watermarking processes are offered to insert the watermark into 3D mesh models. The first process utilizes topical statistical measurements like average and standard deviation in order to alter the values of vertices to secret watermark data into 3D mesh models, however, the second process utilizes a jumbled insertion planning to insert the watermark inside 3D mesh models utilizing the topical statistical measurements and altering 3D mesh vertices together. Simulation results show that the proposed algorithm is robust. The watermarked 3D mesh models are resistant to several attacks like similarity transforms, noise addition, cropping and mesh smoothing.</p></div>","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"2 2","pages":"Pages 148-156"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fcij.2017.10.007","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2314728817300132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

A new robust 3D watermarking algorithm utilizing Fuzzy C-Means (FCM) clustering technique is presented. FCM clusters 3D mesh vertices into suitable and unsuitable choices to insert the watermark without occasioning visible deformation, and also it is tough for the attacker to determine places of the watermark insertion. Two watermarking processes are offered to insert the watermark into 3D mesh models. The first process utilizes topical statistical measurements like average and standard deviation in order to alter the values of vertices to secret watermark data into 3D mesh models, however, the second process utilizes a jumbled insertion planning to insert the watermark inside 3D mesh models utilizing the topical statistical measurements and altering 3D mesh vertices together. Simulation results show that the proposed algorithm is robust. The watermarked 3D mesh models are resistant to several attacks like similarity transforms, noise addition, cropping and mesh smoothing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于模糊c均值聚类的鲁棒三维网格水印算法
提出了一种基于模糊c均值聚类技术的鲁棒三维水印算法。FCM将三维网格的顶点聚类成合适和不合适的位置来插入水印,而不会产生明显的变形,而且攻击者很难确定水印的插入位置。提出了两种将水印插入三维网格模型的方法。第一种方法利用局部统计测量,如平均值和标准差,以改变顶点值的秘密水印数据到三维网格模型中,然而,第二种方法利用一个混乱的插入计划,利用局部统计测量和改变三维网格顶点,将水印插入到三维网格模型中。仿真结果表明,该算法具有较好的鲁棒性。带水印的三维网格模型能够抵抗相似变换、噪声添加、裁剪和网格平滑等攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between E-CRM, Service Quality, Customer Satisfaction, Trust, and Loyalty in banking Industry Enhancing query processing on stock market cloud-based database Crow search algorithm with time varying flight length Strategies for feature selection A Framework to Enhance the International Competitive Advantage of Information Technology Graduates A Literature Review on Agile Methodologies Quality, eXtreme Programming and SCRUM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1