The Microneedle Drug Delivery System and Some Recent Obstacles in its Implementation

Sankha Bhattacharya, Bhagyesh Dugad
{"title":"The Microneedle Drug Delivery System and Some Recent Obstacles in its Implementation","authors":"Sankha Bhattacharya, Bhagyesh Dugad","doi":"10.2174/2210681213666230516155253","DOIUrl":null,"url":null,"abstract":"\n\nTransdermal Drug Delivery (TDD) is a non-painful way of systemically delivering medications by applying a drug formulation to intact, healthy skin. The drug particles’ limitations, including the molecular weight and hydrophilicity, preclude TDD from being exploited extensively. Microneedle arrays (MNA) are an efficient way for medication delivery via the skin. Microneedles enhance medication administration. Microneedles are either long, hollow, or coated. They are designed to target the skin as quickly and safely as possible, without the use of chemical, nanoparticle, or hypodermic injections and without requiring micro-pen or physical strategies. Solid microneedles include micropores, whereas hollow microneedles provide a more profound passage into the dermis. Investigations have been conducted on the use of dissolving microneedles for the delivery of vaccines, while coated microneedles have been utilized to efficiently deliver vaccines. This paper attempts to provide a comprehensive summary of the current state of MNA science, with a focus on methodologies, issues, implementations, and the types of materials lately dispersed by such devices. In addition, some information regarding the components and manufacturing methods is provided. Metals, silicone, ceramics, synthetic materials, and biodegradable polymers, such as carbohydrates, can be utilized to manufacture microneedles.\n","PeriodicalId":38913,"journal":{"name":"Nanoscience and Nanotechnology - Asia","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology - Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210681213666230516155253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Transdermal Drug Delivery (TDD) is a non-painful way of systemically delivering medications by applying a drug formulation to intact, healthy skin. The drug particles’ limitations, including the molecular weight and hydrophilicity, preclude TDD from being exploited extensively. Microneedle arrays (MNA) are an efficient way for medication delivery via the skin. Microneedles enhance medication administration. Microneedles are either long, hollow, or coated. They are designed to target the skin as quickly and safely as possible, without the use of chemical, nanoparticle, or hypodermic injections and without requiring micro-pen or physical strategies. Solid microneedles include micropores, whereas hollow microneedles provide a more profound passage into the dermis. Investigations have been conducted on the use of dissolving microneedles for the delivery of vaccines, while coated microneedles have been utilized to efficiently deliver vaccines. This paper attempts to provide a comprehensive summary of the current state of MNA science, with a focus on methodologies, issues, implementations, and the types of materials lately dispersed by such devices. In addition, some information regarding the components and manufacturing methods is provided. Metals, silicone, ceramics, synthetic materials, and biodegradable polymers, such as carbohydrates, can be utilized to manufacture microneedles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微针给药系统及其实施中的一些近期障碍
透皮给药(TDD)是一种通过将药物配方应用于完整、健康的皮肤而系统地给药的无痛苦方式。药物颗粒的局限性,包括分子量和亲水性,阻碍了TDD的广泛开发。微针阵列(MNA)是一种通过皮肤给药的有效方法。微针加强了药物管理。微针要么长,要么中空,要么有涂层。它们被设计成尽可能快速和安全地靶向皮肤,不使用化学、纳米颗粒或皮下注射,也不需要微型笔或物理策略。实心微针包括微孔,而空心微针提供更深入真皮层的通道。对使用溶解微针注射疫苗进行了调查,同时利用涂膜微针有效地注射疫苗。本文试图对MNA科学的现状提供一个全面的总结,重点是方法论、问题、实现和最近由这些设备分散的材料类型。此外,还提供了有关部件和制造方法的一些信息。金属、有机硅、陶瓷、合成材料和生物可降解聚合物,如碳水化合物,都可以用来制造微针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscience and Nanotechnology - Asia
Nanoscience and Nanotechnology - Asia Engineering-Engineering (all)
CiteScore
1.90
自引率
0.00%
发文量
35
期刊介绍: Nanoscience & Nanotechnology-Asia publishes expert reviews, original research articles, letters and guest edited issues on all the most recent advances in nanoscience and nanotechnology with an emphasis on research in Asia and Japan. All aspects of the field are represented including chemistry, physics, materials science, biology and engineering mainly covering the following; synthesis, characterization, assembly, theory, and simulation of nanostructures (nanomaterials and assemblies, nanodevices, nano-bubbles, nano-droplets, nanofluidics, and self-assembled structures), nanofabrication, nanobiotechnology, nanomedicine and methods and tools for nanoscience and nanotechnology.
期刊最新文献
A Review on Novel Nanofiber-based Dermal Applications: Utilization of Polysaccharides Nanotechnology: A Promising Area in Medical Science Investigation of Therapeutic Potential of Biosynthesized Silver and Gold Nanoparticles Using Extract of Wrightia tinctoria Lipid-based Nanoparticles (LNP) Structures used for Drug Delivery and Targeting: Clinical Trials and Patents Metal-based nanoparticles in the treatment of infectious diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1