H. Li, S. Kovalchuk, A. Kumar, D. Liang, B. Frank, H. Lin, N. Severin, K. Bolotin, S. Kirstein, J. P. Rabe
{"title":"Evidence for charging and discharging of MoS2 and WS2 on mica by intercalating molecularly thin liquid layers","authors":"H. Li, S. Kovalchuk, A. Kumar, D. Liang, B. Frank, H. Lin, N. Severin, K. Bolotin, S. Kirstein, J. P. Rabe","doi":"10.1002/pssa.202300302","DOIUrl":null,"url":null,"abstract":"Transition metal dichalcogenides (TMDC) are often mechanically exfoliated on mica and examined under ambient conditions. It is known that above a certain relative humidity, a molecularly thin layer of water intercalates between the mica and the TMDC. Here, we investigate the effect of molecularly thin liquid layers on the optical spectra of MoS2 and WS2 exfoliated on dry mica and exposed to the vapors of water, ethanol, and tetrahydrofuran (THF). Photoluminescence (PL) and differential reflectance (ΔR/R) spectra on the TMDCs on dry mica show dominant trion emission due to n‐doping. Intercalation of water removes charge doping and results in purely neutral exciton emission, while an ethanol layer, which can be reversibly exchanged with water, does not completely suppress charge. Similarly, THF intercalates between TMDC and mica, as shown by atomic force microscopy, but it does not suppress the charging of mica. In MoS2 bi‐ and trilayers, an intercalated water layer leads to a near doubling of the intensity of the indirect band transition. The described charging/discharging of TMDCs by molecular thin liquid layers could provide important clues to better control the optical properties of TMDCs under environmental conditions.This article is protected by copyright. All rights reserved.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica status solidi (A): Applied research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal dichalcogenides (TMDC) are often mechanically exfoliated on mica and examined under ambient conditions. It is known that above a certain relative humidity, a molecularly thin layer of water intercalates between the mica and the TMDC. Here, we investigate the effect of molecularly thin liquid layers on the optical spectra of MoS2 and WS2 exfoliated on dry mica and exposed to the vapors of water, ethanol, and tetrahydrofuran (THF). Photoluminescence (PL) and differential reflectance (ΔR/R) spectra on the TMDCs on dry mica show dominant trion emission due to n‐doping. Intercalation of water removes charge doping and results in purely neutral exciton emission, while an ethanol layer, which can be reversibly exchanged with water, does not completely suppress charge. Similarly, THF intercalates between TMDC and mica, as shown by atomic force microscopy, but it does not suppress the charging of mica. In MoS2 bi‐ and trilayers, an intercalated water layer leads to a near doubling of the intensity of the indirect band transition. The described charging/discharging of TMDCs by molecular thin liquid layers could provide important clues to better control the optical properties of TMDCs under environmental conditions.This article is protected by copyright. All rights reserved.