{"title":"Hurdle Technology – Approaches to Improve Cosmetic Preservation","authors":"S. Athar, Anjali Gholap, R. Rastogi","doi":"10.11648/j.ijpc.20230903.12","DOIUrl":null,"url":null,"abstract":": Increasing toxicity reports and new regulations for existing preservatives has driven a need for cosmetic formulations that are self-preserved. Use of preservatives is important to ascertain shelf life stability and minimize contamination after opening. While new classes of materials are being researched, their efficacy has been found to be substantially lower than their predecessors. Due to the variety of formulation types, it is exceedingly challenging to preserve different product formats using a handful of preservatives. Hurdle technology is being adapted by cosmetic scientists for designing formulations by modifying physico-chemical properties and use of multi-functional ingredients with antimicrobial properties to improve shelf life and minimize in-use contamination of products. This technology will also assist formulation scientists to make “preservative-free” claims for products while consumers get the advantage of using “clean cosmetics”. Further, multifunctional materials help in reducing the formulation cost while enhancing product stability due to lesser number of ingredients. In this focussed review, we describe various techniques for improving preservation with their strengths and weaknesses to assist formulation scientists in making informed choices. Implementation of these methods with new preservatives will provide solutions to scientists to manage the diverse range of formulations for various benefits","PeriodicalId":14230,"journal":{"name":"International Journal of Pharmacy and Chemistry","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ijpc.20230903.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: Increasing toxicity reports and new regulations for existing preservatives has driven a need for cosmetic formulations that are self-preserved. Use of preservatives is important to ascertain shelf life stability and minimize contamination after opening. While new classes of materials are being researched, their efficacy has been found to be substantially lower than their predecessors. Due to the variety of formulation types, it is exceedingly challenging to preserve different product formats using a handful of preservatives. Hurdle technology is being adapted by cosmetic scientists for designing formulations by modifying physico-chemical properties and use of multi-functional ingredients with antimicrobial properties to improve shelf life and minimize in-use contamination of products. This technology will also assist formulation scientists to make “preservative-free” claims for products while consumers get the advantage of using “clean cosmetics”. Further, multifunctional materials help in reducing the formulation cost while enhancing product stability due to lesser number of ingredients. In this focussed review, we describe various techniques for improving preservation with their strengths and weaknesses to assist formulation scientists in making informed choices. Implementation of these methods with new preservatives will provide solutions to scientists to manage the diverse range of formulations for various benefits