A. Fantoni , M. Fernandes , Y. Vigranenko , M. Vieira
{"title":"Local Surface Plasmon Resonance of metallic nanoparticles embedded in amorphous silicon","authors":"A. Fantoni , M. Fernandes , Y. Vigranenko , M. Vieira","doi":"10.1016/j.ctmat.2016.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>This work reports a theoretical study aimed to identify the plasmonic resonance condition for a system formed by metallic nanoparticles embedded in an a-Si:H matrix. The study is based on a Tauc-Lorentz model for the electrical permittivity of a-Si:H and a Drude model for the metallic nanoparticles and the polarizability of an aluminium sphereshaped particle with radius of 10-20 nm. We also performed FDTD simulations of light propagation inside this structure reporting about the effects caused by a single nanosphere of aluminium, silver and, as a comparison, an ideally perfectly conductor. The simulation results show that it is possible to obtain a plasmonic resonance in the red part of the spectrum (600-650 nm) when 10-20 nm radius aluminium spheres are embedded into a-Si:H.</p></div>","PeriodicalId":10198,"journal":{"name":"Ciência & Tecnologia dos Materiais","volume":"29 1","pages":"Pages e146-e150"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ctmat.2016.06.011","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciência & Tecnologia dos Materiais","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0870831217300460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This work reports a theoretical study aimed to identify the plasmonic resonance condition for a system formed by metallic nanoparticles embedded in an a-Si:H matrix. The study is based on a Tauc-Lorentz model for the electrical permittivity of a-Si:H and a Drude model for the metallic nanoparticles and the polarizability of an aluminium sphereshaped particle with radius of 10-20 nm. We also performed FDTD simulations of light propagation inside this structure reporting about the effects caused by a single nanosphere of aluminium, silver and, as a comparison, an ideally perfectly conductor. The simulation results show that it is possible to obtain a plasmonic resonance in the red part of the spectrum (600-650 nm) when 10-20 nm radius aluminium spheres are embedded into a-Si:H.