3D Composite Glass-silicon Interposer Integrated With Polymer Arrayed Waveguide Grating

Ziji Wang, J. Shang
{"title":"3D Composite Glass-silicon Interposer Integrated With Polymer Arrayed Waveguide Grating","authors":"Ziji Wang, J. Shang","doi":"10.1109/ectc32862.2020.00288","DOIUrl":null,"url":null,"abstract":"Integrating optical interconnects onto TSV/TGV based interposer to meet the ever-increasing chip-to-chip bandwidth demand has received continuously growing interest. Besides optical interconnections, passive optical device with relatively large footprints and low fabrication cost also holds the potential to be directly integrated onto current interposer technology. In this study, a polymer-based low-index-contrast arrayed waveguide grating(AWG) is integrated onto the 3D composite glass-silicon interposer to realize wavelength division (de)multiplexing (WDM) applications. The 3D composite interposer is fabricated by glass reflow process, polymer arrayed waveguide grating which has single mode waveguide platform is then directly fabricated onto the interposer. The feasibility of using borosilicate glass as bottom cladding of on-interposer optical waveguide and passive optical device has been verified through both simulation and experimental results. Transferring area-cost optical devices from photonics chip to composite interposer provides a promising solution to enhance the integration density.","PeriodicalId":6722,"journal":{"name":"2020 IEEE 70th Electronic Components and Technology Conference (ECTC)","volume":"5 1","pages":"1844-1848"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 70th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc32862.2020.00288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating optical interconnects onto TSV/TGV based interposer to meet the ever-increasing chip-to-chip bandwidth demand has received continuously growing interest. Besides optical interconnections, passive optical device with relatively large footprints and low fabrication cost also holds the potential to be directly integrated onto current interposer technology. In this study, a polymer-based low-index-contrast arrayed waveguide grating(AWG) is integrated onto the 3D composite glass-silicon interposer to realize wavelength division (de)multiplexing (WDM) applications. The 3D composite interposer is fabricated by glass reflow process, polymer arrayed waveguide grating which has single mode waveguide platform is then directly fabricated onto the interposer. The feasibility of using borosilicate glass as bottom cladding of on-interposer optical waveguide and passive optical device has been verified through both simulation and experimental results. Transferring area-cost optical devices from photonics chip to composite interposer provides a promising solution to enhance the integration density.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成聚合物阵列波导光栅的三维复合玻璃硅中间层
将光互连集成到基于TSV/TGV的中间层上,以满足不断增长的片对片带宽需求,已受到越来越多的关注。除了光互连之外,无源光器件具有相对较大的占地面积和较低的制造成本,也具有直接集成到现有中间体技术中的潜力。在这项研究中,基于聚合物的低折射率对比度阵列波导光栅(AWG)集成到三维复合玻璃硅中间层中,以实现波分(解)复用(WDM)应用。采用玻璃回流工艺制作三维复合中间体,将具有单模波导平台的聚合物阵列波导光栅直接制作在中间体上。通过仿真和实验结果验证了硼硅玻璃作为间置光波导和无源光器件底包层的可行性。将面积成本光学器件从光子芯片转移到复合中间层是提高集成密度的一种很有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal aging reliability of socketable, surface-modified solder BGAs with and without polymer collars Plating-free Bumping by Cu Nanopaste and Injection Molded Solder (IMS) for Fine Pitch Flip Chip Joining Photosensitive polymer reliability for fine pitch RDL applications Characterization and Application of a Novel Permanent Bonding Material ECTC 2020 Breaker Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1