Carrier Harmonic Loss Reduction Technique on Dual Three-Phase Permanent-Magnet Synchronous Motors with Phase-Shift PWM

Y. Miyama, H. Kometani, K. Akatsu
{"title":"Carrier Harmonic Loss Reduction Technique on Dual Three-Phase Permanent-Magnet Synchronous Motors with Phase-Shift PWM","authors":"Y. Miyama, H. Kometani, K. Akatsu","doi":"10.23919/IPEC.2018.8508020","DOIUrl":null,"url":null,"abstract":"This work investigates a method to reduce the carrier harmonic current and the carrier harmonic losses of a permanent-magnet synchronous motor (PMSM) with dual three-phase windings. The motor input impedance of the carrier harmonics is increased to reduce the carrier harmonic current by reinforcing the carrier harmonic gap flux density of the dual three-phase windings. Our study is carried out based on a theoretical approach by calculating the gap flux density, including the space, time, and carrier harmonics. The result of our theoretical approach is confirmed by finite element analysis (FEA) based on a 12-slot, 10-pole phase-shift winding dual three-phase PMSM. The measured result of our manufactured motor also reveals that the target harmonic current was reduced by applying our proposed technique.","PeriodicalId":6610,"journal":{"name":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","volume":"4 1","pages":"711-717"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IPEC.2018.8508020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This work investigates a method to reduce the carrier harmonic current and the carrier harmonic losses of a permanent-magnet synchronous motor (PMSM) with dual three-phase windings. The motor input impedance of the carrier harmonics is increased to reduce the carrier harmonic current by reinforcing the carrier harmonic gap flux density of the dual three-phase windings. Our study is carried out based on a theoretical approach by calculating the gap flux density, including the space, time, and carrier harmonics. The result of our theoretical approach is confirmed by finite element analysis (FEA) based on a 12-slot, 10-pole phase-shift winding dual three-phase PMSM. The measured result of our manufactured motor also reveals that the target harmonic current was reduced by applying our proposed technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移相PWM双三相永磁同步电动机载波谐波损耗降低技术
本文研究了一种减小双三相绕组永磁同步电动机载流子谐波电流和载流子谐波损耗的方法。通过增强双三相绕组的载流子间隙磁通密度,增加载流子谐波的电机输入阻抗,以减小载流子谐波电流。我们的研究基于理论方法,通过计算间隙磁通密度,包括空间、时间和载流子谐波来进行。基于12槽10极移相绕组双三相永磁同步电动机的有限元分析证实了理论方法的正确性。对所研制电机的实测结果也表明,采用本文提出的方法可以降低目标谐波电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flying Capacitor Resonant Pole Inverter with Direct Inductor Current Feedback Comparative Study of Single-Phase Fundamental Component Frequency Estimation Schemes under Time-varying Harmonic Distortion Operation Magnet Arrangement suitable for Large Air Gap Length in Linear PM Vernier Motor Fall Prevention and Vibration Suppression of Wheelchair Using Rider Motion State New Module with Isolated Half Bridge or Isolated Full Bridge for Modular Medium voltage converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1