N. A. Andarawis, Sara L. Seyhan, R. Mauck, M. Soltz, G. Ateshian, C. Hung
{"title":"A Novel Device for Direct Permeation Measurements of Hydrogels and Soft Hydrated Tissues","authors":"N. A. Andarawis, Sara L. Seyhan, R. Mauck, M. Soltz, G. Ateshian, C. Hung","doi":"10.1115/imece2001/bed-23149","DOIUrl":null,"url":null,"abstract":"\n The goal of this study was to develop a system to reliably measure the intrinsic hydraulic permeability of hydrogels and soft hydrated tissues. Such a device can be used to assess the development of functional properties in tissue engineered constructs [1]. The design parameters for such a device include ease of assembly and the ability to measure hydraulic permeability over a range of specimen deformations. To meet these criteria, a device was designed that could quantify the hydraulic permeability of a sample under different levels of deformation, allowing characterization of strain-dependent effects. The device was tested on both agarose and articular cartilage specimens, yielding permeability values consistent with published data [2]. The intrinsic hydraulic permeability of a tissue is an important parameter that governs fluid exudation during deformational loading. The ability of articular cartilage, which exhibits non-linear strain dependent hydraulic permeability [3], to generate and sustain interstitial fluid pressurization is essential to its functional properties (e.g., load bearing and lubrication). This novel device allows for direct and reliable measurement of these physical properties.","PeriodicalId":7238,"journal":{"name":"Advances in Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/bed-23149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The goal of this study was to develop a system to reliably measure the intrinsic hydraulic permeability of hydrogels and soft hydrated tissues. Such a device can be used to assess the development of functional properties in tissue engineered constructs [1]. The design parameters for such a device include ease of assembly and the ability to measure hydraulic permeability over a range of specimen deformations. To meet these criteria, a device was designed that could quantify the hydraulic permeability of a sample under different levels of deformation, allowing characterization of strain-dependent effects. The device was tested on both agarose and articular cartilage specimens, yielding permeability values consistent with published data [2]. The intrinsic hydraulic permeability of a tissue is an important parameter that governs fluid exudation during deformational loading. The ability of articular cartilage, which exhibits non-linear strain dependent hydraulic permeability [3], to generate and sustain interstitial fluid pressurization is essential to its functional properties (e.g., load bearing and lubrication). This novel device allows for direct and reliable measurement of these physical properties.