{"title":"Spectroscopic Study of Ultra High Molecular Weight Polyethylene (UHMWPE) and Mg-Ni-doped ZnFe2O3 Nano Composites","authors":"A. Azam, M. Mehmood","doi":"10.12691/pmc-6-1-1","DOIUrl":null,"url":null,"abstract":"The present study aims at investigating the effect of incorporating nano scale MgxNixZn1-xFe2O3 (where x=0.15) as nano fillers on the physical and chemical stability of ultra high molecular weight polyethylene (UHMWPE). The effect of adding 1% and 2% (by weight) nano fillers on the physicochemical properties of UHMWPE/MgxNixZn1-xFe2O3 nano composites have also been investigated by using FTIR, Raman, and UV-VIS spectroscopy. FTIR data of UHMWPE/MgxNixZn1-xFe2O3 nano composites reveal that the addition of MgxNixZn1-xFe2O3 up to 1% induces significant chemical and physical structural alterations in UHMWPE matrix. However, this behavior is found to reduce on increasing the concentration of nano fillers from 1% to 2%. Raman spectroscopic data shows that crystalline contents of UHMWPE remain unaffected with the addition of nano fillers, however; a significant increase in amorphous contents and decrease in all-trans interphase region is observed. This behavior is attributed to the chain scission reactions due to addition of MgxNixZn1-xFe2O3 followed by compression moulding process at high pressure and elevated temperature. Absorption spectroscopy analysis revealed that the incorporation of MgxNixZn1-xFe2O3 results in decrease of energy band gaps from 2.14 eV to 2.08 eV (for direct transition) and from 1.54 eV to 1.38eV (for indirect transition) due to band gap energy which is induced because of MgxNixZn1-xFe2O3 incorporation as nano fillers within the PE matrix.","PeriodicalId":7338,"journal":{"name":"Advances in Materials Physics and Chemistry","volume":"139 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Physics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/pmc-6-1-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aims at investigating the effect of incorporating nano scale MgxNixZn1-xFe2O3 (where x=0.15) as nano fillers on the physical and chemical stability of ultra high molecular weight polyethylene (UHMWPE). The effect of adding 1% and 2% (by weight) nano fillers on the physicochemical properties of UHMWPE/MgxNixZn1-xFe2O3 nano composites have also been investigated by using FTIR, Raman, and UV-VIS spectroscopy. FTIR data of UHMWPE/MgxNixZn1-xFe2O3 nano composites reveal that the addition of MgxNixZn1-xFe2O3 up to 1% induces significant chemical and physical structural alterations in UHMWPE matrix. However, this behavior is found to reduce on increasing the concentration of nano fillers from 1% to 2%. Raman spectroscopic data shows that crystalline contents of UHMWPE remain unaffected with the addition of nano fillers, however; a significant increase in amorphous contents and decrease in all-trans interphase region is observed. This behavior is attributed to the chain scission reactions due to addition of MgxNixZn1-xFe2O3 followed by compression moulding process at high pressure and elevated temperature. Absorption spectroscopy analysis revealed that the incorporation of MgxNixZn1-xFe2O3 results in decrease of energy band gaps from 2.14 eV to 2.08 eV (for direct transition) and from 1.54 eV to 1.38eV (for indirect transition) due to band gap energy which is induced because of MgxNixZn1-xFe2O3 incorporation as nano fillers within the PE matrix.