High-energy-resolution measurements of an ultracold-atom–ion collisional cross section

Ruti Ben-shlomi, Meirav Pinkas, Z. Meir, T. Sikorsky, O. Katz, N. Akerman, R. Ozeri
{"title":"High-energy-resolution measurements of an ultracold-atom–ion collisional cross section","authors":"Ruti Ben-shlomi, Meirav Pinkas, Z. Meir, T. Sikorsky, O. Katz, N. Akerman, R. Ozeri","doi":"10.1103/PHYSREVA.103.032805","DOIUrl":null,"url":null,"abstract":"The cross section of a given process fundamentally quantifies the probability for that given process to occur. In the quantum regime of low energies, the cross section can vary strongly with collision energy due to quantum effects. Here, we report on a method to directly measure the atom-ion collisional cross section in the energy range of 0.2-12 mK$\\cdot$ k$_B$, by shuttling ultracold atoms trapped in an optical-lattice across a radio-frequency trapped ion. In this method, the average number of atom-ion collisions per experiment is below one such that the energy resolution is not limited by the broad (power-law) steady-state atom-ion energy distribution. Here, we estimate that the energy resolution is below 200 $\\mu$K$\\cdot$k$_B$, limited by drifts in the ion's excess micromotion compensation and can be reduced to the 10's $\\mu$K$\\cdot$k$_B$ regime. This resolution is one order-of-magnitude better than previous experiments measuring cold atom-ion collisional cross section energy dependence. We used our method to measure the energy dependence of the inelastic collision cross sections of a non-adiabatic Electronic-Excitation-Exchange (EEE) and Spin-Orbit Change (SOC) processes. We found that in the measured energy range, the EEE and SOC cross sections statistically agree with the classical Langevin cross section. This method allows for measuring the cross sections of various inelastic processes and opens up possibilities to search for atom-ion quantum signatures such as shape-resonances.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVA.103.032805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The cross section of a given process fundamentally quantifies the probability for that given process to occur. In the quantum regime of low energies, the cross section can vary strongly with collision energy due to quantum effects. Here, we report on a method to directly measure the atom-ion collisional cross section in the energy range of 0.2-12 mK$\cdot$ k$_B$, by shuttling ultracold atoms trapped in an optical-lattice across a radio-frequency trapped ion. In this method, the average number of atom-ion collisions per experiment is below one such that the energy resolution is not limited by the broad (power-law) steady-state atom-ion energy distribution. Here, we estimate that the energy resolution is below 200 $\mu$K$\cdot$k$_B$, limited by drifts in the ion's excess micromotion compensation and can be reduced to the 10's $\mu$K$\cdot$k$_B$ regime. This resolution is one order-of-magnitude better than previous experiments measuring cold atom-ion collisional cross section energy dependence. We used our method to measure the energy dependence of the inelastic collision cross sections of a non-adiabatic Electronic-Excitation-Exchange (EEE) and Spin-Orbit Change (SOC) processes. We found that in the measured energy range, the EEE and SOC cross sections statistically agree with the classical Langevin cross section. This method allows for measuring the cross sections of various inelastic processes and opens up possibilities to search for atom-ion quantum signatures such as shape-resonances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超低温原子-离子碰撞截面的高能量分辨率测量
给定过程的横截面从根本上量化了该给定过程发生的概率。在低能的量子态中,由于量子效应,截面随碰撞能量的变化很大。在这里,我们报告了一种直接测量原子-离子碰撞截面的方法,能量范围为0.2-12 mK$\cdot$ k$_B$,通过穿梭在光学晶格中被捕获的超冷原子穿过射频被捕获的离子。在这种方法中,每次实验中原子-离子碰撞的平均次数低于一次,因此能量分辨率不受广义(幂律)稳态原子-离子能量分布的限制。在这里,我们估计能量分辨率低于200 $\mu$K$\cdot$ K$ _B$,受离子过量微动补偿漂移的限制,可以降低到10的$\mu$K$\cdot$ K$ _B$机制。这个分辨率比以前测量冷原子-离子碰撞截面能量依赖的实验好一个数量级。我们用我们的方法测量了非绝热电子激发交换(EEE)和自旋轨道变化(SOC)过程的非弹性碰撞截面的能量依赖性。我们发现,在测量的能量范围内,EEE和SOC截面在统计上与经典朗之万截面一致。这种方法允许测量各种非弹性过程的横截面,并开辟了寻找原子-离子量子特征(如形状共振)的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A liquid nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3×10-18 In Situ Sub-50-Attosecond Active Stabilization of the Delay Between Infrared and Extreme-Ultraviolet Light Pulses Laser spectroscopy of the 2S1/2 - 2P1/2, 2P3/2 transitions in stored and cooled relativistic C3+ ions High-Resolution Imaging of Cold Atoms through a Multimode Fiber Bistable optical transmission through arrays of atoms in free space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1