High temperature Plasma Immersion Ion Implantation of AsH3 using PULSION®

F. Torregrosa, J. Duchaine, Y. Spiegel, Ludovic Vivian, S. Qin, Y. Hu, A. Mcteer
{"title":"High temperature Plasma Immersion Ion Implantation of AsH3 using PULSION®","authors":"F. Torregrosa, J. Duchaine, Y. Spiegel, Ludovic Vivian, S. Qin, Y. Hu, A. Mcteer","doi":"10.1109/IIT.2014.6939770","DOIUrl":null,"url":null,"abstract":"Plasma immersion ion implantation (PIII) technology is an alternative that overcomes the limitations of conventional beam line ion implantation for shallow, high dose and 3D doping on advanced memory and logic devices. This technique also delivers a better CoO as the result of higher productivity, smaller footprint and lower operating costs. With the requirements of new device architecture such as FINFET or FD-SOI for Logic, reduction of cell sizes for Memories, or 3D integration for “More than Moore” applications, a shallow profile is not the only critical objective. Amorphization and defects prevention become key points to allow good recrystallization and activation after annealing while reducing the thermal budget. IBS has developed and implemented the technique of high temperature implantation (up to 500°C) on the PIII system, PULSION®. In this paper, we present the impact of high temperature AsH3 Plasma doping in silicon. ARXPS (Angle Resolution X-ray Photoelectron Spectroscopy), SIMS (Secondary Ion Mass Spectrometry), and TEM (Transmission Electron Microscopy) analysis are used to study impact of the temperature on doping profiles and amorphization layer thickness. We show that when “high” acceleration voltage and high doses are used, thickness of the amorphization layer is drastically reduced (figure 1), and when lower acceleration voltage is used, amorphization layer can be totally suppressed.","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"52 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6939770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Plasma immersion ion implantation (PIII) technology is an alternative that overcomes the limitations of conventional beam line ion implantation for shallow, high dose and 3D doping on advanced memory and logic devices. This technique also delivers a better CoO as the result of higher productivity, smaller footprint and lower operating costs. With the requirements of new device architecture such as FINFET or FD-SOI for Logic, reduction of cell sizes for Memories, or 3D integration for “More than Moore” applications, a shallow profile is not the only critical objective. Amorphization and defects prevention become key points to allow good recrystallization and activation after annealing while reducing the thermal budget. IBS has developed and implemented the technique of high temperature implantation (up to 500°C) on the PIII system, PULSION®. In this paper, we present the impact of high temperature AsH3 Plasma doping in silicon. ARXPS (Angle Resolution X-ray Photoelectron Spectroscopy), SIMS (Secondary Ion Mass Spectrometry), and TEM (Transmission Electron Microscopy) analysis are used to study impact of the temperature on doping profiles and amorphization layer thickness. We show that when “high” acceleration voltage and high doses are used, thickness of the amorphization layer is drastically reduced (figure 1), and when lower acceleration voltage is used, amorphization layer can be totally suppressed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温等离子体浸没离子注入的AsH3使用的推勒®
等离子体浸没离子注入(PIII)技术克服了传统束流线离子注入的局限性,可以在先进的存储和逻辑器件上进行浅、高剂量和3D掺杂。该技术还提供了更好的CoO,因为它具有更高的生产率、更小的占地面积和更低的运营成本。随着新器件架构的要求,如用于逻辑的FINFET或FD-SOI,用于存储器的单元尺寸减小,或用于“超越摩尔”应用的3D集成,浅轮廓并不是唯一的关键目标。在减少热收支的同时,非晶化和缺陷预防成为退火后良好再结晶和活化的关键。IBS已经在PIII系统上开发并实施了高温植入技术(高达500°C)。在本文中,我们介绍了高温AsH3等离子体掺杂在硅中的影响。采用ARXPS(角分辨x射线光电子能谱)、SIMS(二次离子质谱)和TEM(透射电子显微镜)分析研究了温度对掺杂谱和非晶层厚度的影响。我们表明,当使用“高”加速电压和高剂量时,非晶层的厚度急剧减小(图1),而当使用较低的加速电压时,非晶层可以完全抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increase of sp3 content in a-C films with gas cluster ion beam bombardments; XPS and NEXAFS study NMOS source-drain extension ion implantation into heated substrates Activation of low-dose Si+ implant into In0.53Ga0.47As with Al+ and P+ co-implants The features of cold boron implantation in silicon Plasma Doping optimizing knock-on effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1