{"title":"Symmetrized importance samplers for stochastic differential equations","authors":"Andrew B. Leach, Kevin K. Lin, M. Morzfeld","doi":"10.2140/camcos.2018.13.215","DOIUrl":null,"url":null,"abstract":"We study a class of importance sampling methods for stochastic differential equations (SDEs). A small-noise analysis is performed, and the results suggest that a simple symmetrization procedure can significantly improve the performance of our importance sampling schemes when the noise is not too large. We demonstrate that this is indeed the case for a number of linear and nonlinear examples. Potential applications, e.g., data assimilation, are discussed.","PeriodicalId":49265,"journal":{"name":"Communications in Applied Mathematics and Computational Science","volume":"53 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied Mathematics and Computational Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2018.13.215","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
We study a class of importance sampling methods for stochastic differential equations (SDEs). A small-noise analysis is performed, and the results suggest that a simple symmetrization procedure can significantly improve the performance of our importance sampling schemes when the noise is not too large. We demonstrate that this is indeed the case for a number of linear and nonlinear examples. Potential applications, e.g., data assimilation, are discussed.
期刊介绍:
CAMCoS accepts innovative papers in all areas where mathematics and applications interact. In particular, the journal welcomes papers where an idea is followed from beginning to end — from an abstract beginning to a piece of software, or from a computational observation to a mathematical theory.