Probabilistic Risk Assessment of Aging Layered Pressure Vessels

D. Říha, M. Kirby, J. Cardinal, L. Domyancic, J. McFarland, F. Brust
{"title":"Probabilistic Risk Assessment of Aging Layered Pressure Vessels","authors":"D. Říha, M. Kirby, J. Cardinal, L. Domyancic, J. McFarland, F. Brust","doi":"10.1115/pvp2019-93720","DOIUrl":null,"url":null,"abstract":"\n The National Aeronautics and Space Administration (NASA) operates approximately 300 aging layered pressure vessels that were designed and manufactured prior to ASME Boiler and Pressure Vessel (B&PV) code requirements. In order to make decisions regarding the continued fitness-for-service of these non-code carbon steel vessels, it is necessary to perform a relative risk of failure assessment for each vessel. However, risk assessment of these vessels is confounded by uncertainties and variabilities related to the use of proprietary materials in fabrication, missing construction records, geometric discontinuities, weld residual stresses, and complex service stress gradients in and around the welds. Therefore, a probabilistic framework that can capture these uncertainties and variabilities has been developed to assess the fracture risk of flaws in regions of interest, such as longitudinal and circumferential welds, using the NESSUS® probabilistic modeling software and NASGRO® fracture mechanics software. In this study, the probabilistic framework was used to predict variability in the stress intensity factor associated with different reference flaws located in the head-to-shell circumferential welds of a 4-layer and 14-layer pressure vessel. The probabilistic studies predict variability in flaw behavior and the important uncertain parameters for each reference flaw location.","PeriodicalId":23651,"journal":{"name":"Volume 6B: Materials and Fabrication","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The National Aeronautics and Space Administration (NASA) operates approximately 300 aging layered pressure vessels that were designed and manufactured prior to ASME Boiler and Pressure Vessel (B&PV) code requirements. In order to make decisions regarding the continued fitness-for-service of these non-code carbon steel vessels, it is necessary to perform a relative risk of failure assessment for each vessel. However, risk assessment of these vessels is confounded by uncertainties and variabilities related to the use of proprietary materials in fabrication, missing construction records, geometric discontinuities, weld residual stresses, and complex service stress gradients in and around the welds. Therefore, a probabilistic framework that can capture these uncertainties and variabilities has been developed to assess the fracture risk of flaws in regions of interest, such as longitudinal and circumferential welds, using the NESSUS® probabilistic modeling software and NASGRO® fracture mechanics software. In this study, the probabilistic framework was used to predict variability in the stress intensity factor associated with different reference flaws located in the head-to-shell circumferential welds of a 4-layer and 14-layer pressure vessel. The probabilistic studies predict variability in flaw behavior and the important uncertain parameters for each reference flaw location.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
老化层状压力容器的概率风险评估
美国国家航空航天局(NASA)运行着大约300个老化的分层压力容器,这些压力容器是在ASME锅炉和压力容器(B&PV)规范要求之前设计和制造的。为了对这些非规范碳钢容器的持续适用性做出决定,有必要对每个容器进行相对失效风险评估。然而,由于在制造过程中使用专有材料、缺少施工记录、几何不连续、焊缝残余应力以及焊缝内外复杂的使用应力梯度等因素,这些容器的风险评估受到了不确定性和可变性的影响。因此,使用NESSUS®概率建模软件和NASGRO®断裂力学软件,开发了一个概率框架,可以捕捉这些不确定性和可变性,以评估感兴趣区域(如纵向和周向焊缝)缺陷的断裂风险。在这项研究中,使用概率框架来预测与4层和14层压力容器的头壳周焊缝中不同参考缺陷相关的应力强度因子的变化。概率研究预测了缺陷行为的可变性和每个参考缺陷位置的重要不确定参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the Resistance of Austenitic Stainless Steel Welds to Hydrogen Embrittlement Improvement of Low-Temperature Toughness in Weld Metal Made of 9Cr-1Mo-V Steel by GTAW Method Load Normalization Method Accounting for Elastic and Elastic-Plastic Crack Growth Crack Growth Rate Testing and Large Plate Demonstration Under Chloride-Induced Stress Corrosion Cracking Conditions in Stainless Steel Canisters for Storage of Spent Nuclear Fuel An Efficient Modelling Approach for Predicting Residual Stress in Power-Beam Welds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1