Automatic hierarchical classification using time-based co-occurrences

C. Stauffer
{"title":"Automatic hierarchical classification using time-based co-occurrences","authors":"C. Stauffer","doi":"10.1109/CVPR.1999.784654","DOIUrl":null,"url":null,"abstract":"While a tracking system is unaware of the identity of any object it tracks, the identity remains the same for the entire tracking sequence. Our system leverages this information by using accumulated joint cooccurrences of the representations within the sequence to create a hierarchical binary-tree classifier of the representations. This classifier is useful to classify sequences as well as individual instances. We illustrate the use of this method on two separate representations the tracked object's position, movement, and size; and the tracked object's binary motion silhouettes.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"88 1","pages":"333-339 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

While a tracking system is unaware of the identity of any object it tracks, the identity remains the same for the entire tracking sequence. Our system leverages this information by using accumulated joint cooccurrences of the representations within the sequence to create a hierarchical binary-tree classifier of the representations. This classifier is useful to classify sequences as well as individual instances. We illustrate the use of this method on two separate representations the tracked object's position, movement, and size; and the tracked object's binary motion silhouettes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于时间的共现自动分层分类
虽然跟踪系统不知道它跟踪的任何对象的身份,但整个跟踪序列的身份保持不变。我们的系统通过使用序列中表示的累积联合并发来利用这些信息,从而创建表示的分层二叉树分类器。这个分类器对于分类序列和单个实例都很有用。我们在跟踪对象的位置、运动和大小两个单独的表示上说明了这种方法的使用;以及被跟踪物体的二进制运动轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1