F. Chirigati, Jérôme Siméon, Martin Hirzel, J. Freire
{"title":"Virtual lightweight snapshots for consistent analytics in NoSQL stores","authors":"F. Chirigati, Jérôme Siméon, Martin Hirzel, J. Freire","doi":"10.1109/ICDE.2016.7498334","DOIUrl":null,"url":null,"abstract":"Increasingly, applications that deal with big data need to run analytics concurrently with updates. But bridging the gap between big and fast data is challenging: most of these applications require analytics' results that are fresh and consistent, but without impacting system latency and throughput. We propose virtual lightweight snapshots (VLS), a mechanism that enables consistent analytics without blocking incoming updates in NoSQL stores. VLS requires neither native support for database versioning nor a transaction manager. Besides, it is storage-efficient, keeping additional versions of records only when needed to guarantee consistency, and sharing versions across multiple concurrent snapshots. We describe an implementation of VLS in MongoDB and present a detailed experimental evaluation which shows that it supports consistency for analytics with small impact on query evaluation time, update throughput, and latency.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"31 1","pages":"1310-1321"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Increasingly, applications that deal with big data need to run analytics concurrently with updates. But bridging the gap between big and fast data is challenging: most of these applications require analytics' results that are fresh and consistent, but without impacting system latency and throughput. We propose virtual lightweight snapshots (VLS), a mechanism that enables consistent analytics without blocking incoming updates in NoSQL stores. VLS requires neither native support for database versioning nor a transaction manager. Besides, it is storage-efficient, keeping additional versions of records only when needed to guarantee consistency, and sharing versions across multiple concurrent snapshots. We describe an implementation of VLS in MongoDB and present a detailed experimental evaluation which shows that it supports consistency for analytics with small impact on query evaluation time, update throughput, and latency.