The Adoption of Machine Learning in the Measurement of Copper Contact on the Main Chip in Advanced 3D NAND Technology Nodes

Michael Meng, Albert Li, Andrew Zhang, Leeming Tu, Haydn Zhou, J. Mi, Xi Zou
{"title":"The Adoption of Machine Learning in the Measurement of Copper Contact on the Main Chip in Advanced 3D NAND Technology Nodes","authors":"Michael Meng, Albert Li, Andrew Zhang, Leeming Tu, Haydn Zhou, J. Mi, Xi Zou","doi":"10.1109/ASMC49169.2020.9185390","DOIUrl":null,"url":null,"abstract":"Metrology measurements of the top copper contact in the main chip area is critical to predict the subsequent electrical performance in advanced 3D NAND technology nodes. Conventional CDSEM is used in the determination of top copper CD while the accurate measurement of copper depth remains challenging. In this paper, we propose a new approach that successfully explored the use of machine learning to combine the advantages of optical Critical Dimension (OCD) and picosecond ultrasonic technology (PULSE™) for high volume manufacturing (HVM) measurements in the main chip area. Results demonstrate that by using machine learning, we were able to combine the PULSE reference with cross-section microscopy results to successfully train the OCD data set. OCD measurements are rapid at <1s/site and meets the HVM need for extensive sampling and allows for in-line process control of the top copper contact height. This approach also opens the possibilities for application of machine learning for in-line 3D NAND monitoring process control by combining multiple methods and exploiting the full potential of each of these technologies.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"78 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metrology measurements of the top copper contact in the main chip area is critical to predict the subsequent electrical performance in advanced 3D NAND technology nodes. Conventional CDSEM is used in the determination of top copper CD while the accurate measurement of copper depth remains challenging. In this paper, we propose a new approach that successfully explored the use of machine learning to combine the advantages of optical Critical Dimension (OCD) and picosecond ultrasonic technology (PULSE™) for high volume manufacturing (HVM) measurements in the main chip area. Results demonstrate that by using machine learning, we were able to combine the PULSE reference with cross-section microscopy results to successfully train the OCD data set. OCD measurements are rapid at <1s/site and meets the HVM need for extensive sampling and allows for in-line process control of the top copper contact height. This approach also opens the possibilities for application of machine learning for in-line 3D NAND monitoring process control by combining multiple methods and exploiting the full potential of each of these technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在先进3D NAND技术节点主芯片铜接触测量中的应用
在先进的3D NAND技术节点中,主芯片区域顶部铜触点的计量测量对于预测后续电气性能至关重要。传统的CDSEM用于测定顶部铜CD,但铜深度的精确测量仍然具有挑战性。在本文中,我们提出了一种新方法,成功探索了使用机器学习将光学临界尺寸(OCD)和皮秒超声技术(PULSE™)的优势结合起来,用于主芯片区域的大批量制造(HVM)测量。结果表明,通过使用机器学习,我们能够将PULSE参考与截面显微镜结果结合起来,成功训练OCD数据集。OCD测量在<1s/site的速度下快速,满足HVM对广泛采样的需求,并允许对顶部铜接触高度进行在线过程控制。这种方法还通过结合多种方法和利用每种技术的全部潜力,为机器学习在在线3D NAND监控过程控制中的应用提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematic Missing Pattern Defects Introduced by Topcoat Change at PC Lithography: A Case Study in the Tandem Usage of Inspection Methods Computational Process Control Compatible Dimensional Metrology Tool: Through-focus Scanning Optical Microscopy Characterization of Sub-micron Metal Line Arrays Using Picosecond Ultrasonics An Artificial Neural Network Based Algorithm For Real Time Dispatching Decisions A Framework for Semi-Automated Fault Detection Configuration with Automated Feature Extraction and Limits Setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1