Design and Simulation of a Novel Magnetic Microactuator for Microrobots in Lab-On-a-Chip Applications

Q3 Engineering Advances in Technology Innovation Pub Date : 2022-05-31 DOI:10.31357/ait.v2i3.5521
Nisal Minula Perera Kankanige, Gihan Charith Premachandra Hanchapola Appuhamilage, S.K. Dodampegama, Ranjith Amarasinghe Yattowita Withanage
{"title":"Design and Simulation of a Novel Magnetic Microactuator for Microrobots in Lab-On-a-Chip Applications","authors":"Nisal Minula Perera Kankanige, Gihan Charith Premachandra Hanchapola Appuhamilage, S.K. Dodampegama, Ranjith Amarasinghe Yattowita Withanage","doi":"10.31357/ait.v2i3.5521","DOIUrl":null,"url":null,"abstract":"This article presents the design of a magnetic microactuator comprising soft magnetic material blocks and flexible beams. The modular layout of the proposed microactuator promotes scalability towards different microrobotic applications using low magnetic fields.  The presented microactuator consists of three soft magnetic material (Ni-Fe 4750) blocks connected together via two Polydimethylsiloxane (PDMS) semi-circular beams. A detailed design approach is highlighted giving considerations toward compactness, range of motion and force characteristics of the actuator. The actuator displacement and force characteristics are approximately linear in the magnetic field strength range of 80-160 kA/m. It can achieve maximum displacements of 111.6 µm (at 160 kA/m) during extension and 10.7 µm (at 80 kA/m) during contraction under no-load condition. The maximum force output of the microactuator, computed through a contact simulation, was 404.3 nN at a magnetic field strength of 160 kA/m. The microactuator achieved stroke angles up to 18.4 in a study where the microactuator was integrated with a swimming microrobot executing rowing motion using an artificial appendage, providing insight into the capabilities of actuating untethered microrobots.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31357/ait.v2i3.5521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This article presents the design of a magnetic microactuator comprising soft magnetic material blocks and flexible beams. The modular layout of the proposed microactuator promotes scalability towards different microrobotic applications using low magnetic fields.  The presented microactuator consists of three soft magnetic material (Ni-Fe 4750) blocks connected together via two Polydimethylsiloxane (PDMS) semi-circular beams. A detailed design approach is highlighted giving considerations toward compactness, range of motion and force characteristics of the actuator. The actuator displacement and force characteristics are approximately linear in the magnetic field strength range of 80-160 kA/m. It can achieve maximum displacements of 111.6 µm (at 160 kA/m) during extension and 10.7 µm (at 80 kA/m) during contraction under no-load condition. The maximum force output of the microactuator, computed through a contact simulation, was 404.3 nN at a magnetic field strength of 160 kA/m. The microactuator achieved stroke angles up to 18.4 in a study where the microactuator was integrated with a swimming microrobot executing rowing motion using an artificial appendage, providing insight into the capabilities of actuating untethered microrobots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于微机器人芯片实验室应用的新型磁性微驱动器的设计与仿真
本文介绍了一种由软磁材料块和柔性梁组成的磁性微驱动器的设计。所提出的微执行器的模块化布局促进了低磁场下不同微机器人应用的可扩展性。该微驱动器由三个软磁材料(Ni-Fe 4750)块组成,通过两个聚二甲基硅氧烷(PDMS)半圆梁连接在一起。详细的设计方法是强调考虑到紧凑性,运动范围和执行器的力特性。在80 ~ 160 kA/m的磁场强度范围内,驱动器的位移和力特性近似成线性关系。在空载条件下,拉伸时最大位移为111.6µm (160ka /m),收缩时最大位移为10.7µm (80ka /m)。在磁场强度为160 kA/m时,通过接触模拟计算出微致动器的最大输出力为404.3 nN。在一项研究中,微致动器实现了高达18.4的冲程角度,该微致动器与一个使用人工附件执行划船运动的游泳微型机器人集成在一起,为驱动无系绳微型机器人的能力提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Technology Innovation
Advances in Technology Innovation Energy-Energy Engineering and Power Technology
CiteScore
1.90
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Synthesis and Characterization of Phase Change Microcapsules Containing Nano-Graphite Challenges and Solutions to Criminal Liability for the Actions of Robots and AI Selection of Elevation Models for Flood Inundation Map Generation in Small Urban Stream: Case Study of Anyang Stream Efficient Object Detection and Intelligent Information Display Using YOLOv4-Tiny The Prediction of Low-Rise Building Construction Cost Estimation Using Extreme Learning Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1