Short-Term Demand Forecasting by Using ANN Algorithms

Astha Singh, Kishan Bhushan Sahay
{"title":"Short-Term Demand Forecasting by Using ANN Algorithms","authors":"Astha Singh, Kishan Bhushan Sahay","doi":"10.1109/IEECON.2018.8712265","DOIUrl":null,"url":null,"abstract":"Electric power demand prediction is an important task for the efficient, economic, reliable and accurate power system operations which can be unit commitment, maintenance scheduling, etc. Considering importance of load forecasting different models are proposed for power demand forecasting. ANN is the most widely used method for power demand forecast from years. Simulation results obtained show that ANN is capable of forecasting electricity loads effectively. In this paper different ANN has been applied in short-term demand forecasting that is, the one hour-ahead hourly forecast of the electricity power demand using MATLAB R14a. The simulation results have shown highly accurate one hour ahead load forecast.","PeriodicalId":6628,"journal":{"name":"2018 International Electrical Engineering Congress (iEECON)","volume":"2018 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Electrical Engineering Congress (iEECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEECON.2018.8712265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Electric power demand prediction is an important task for the efficient, economic, reliable and accurate power system operations which can be unit commitment, maintenance scheduling, etc. Considering importance of load forecasting different models are proposed for power demand forecasting. ANN is the most widely used method for power demand forecast from years. Simulation results obtained show that ANN is capable of forecasting electricity loads effectively. In this paper different ANN has been applied in short-term demand forecasting that is, the one hour-ahead hourly forecast of the electricity power demand using MATLAB R14a. The simulation results have shown highly accurate one hour ahead load forecast.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的短期需求预测
电力需求预测是保证电力系统高效、经济、可靠、准确运行的一项重要任务,可以为机组调试、检修调度等提供依据。考虑到负荷预测的重要性,提出了不同的电力需求预测模型。人工神经网络是近年来应用最广泛的电力需求预测方法。仿真结果表明,该方法能够有效地预测电力负荷。本文将不同的人工神经网络应用于短期需求预测,即利用MATLAB R14a对电力需求进行一小时前的小时预测。仿真结果表明,提前1小时的负荷预测具有较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elimination of Common-Mode Voltage in Dual Two-Level Voltage Source Inverter Fed Open-End Load Using a Discontinuous SVM Technique A Fast Battery Cycle Counting Method for Grid-Tied Battery Energy Storage System Subjected to Microcycles Model Predictive Control Application for the Control of a Grid-Connected Synchronous Generator Comparison Between Different Modelling Methods to Study the Dynamical Behaviour of Line Start Permanent Magnet Synchronous Motors Plant Leaf Disease Diagnosis from Color Imagery Using Co-Occurrence Matrix and Artificial Intelligence System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1