A Systematic Study on BEOL Defectivity Control for Future AI Application

J. Chen, F. Lie, S. Devries, C. Boye, Sanjay Mehta, T. Devarajan, M. Silvestre, W. Tseng, M. Aminpur
{"title":"A Systematic Study on BEOL Defectivity Control for Future AI Application","authors":"J. Chen, F. Lie, S. Devries, C. Boye, Sanjay Mehta, T. Devarajan, M. Silvestre, W. Tseng, M. Aminpur","doi":"10.1109/ASMC49169.2020.9185337","DOIUrl":null,"url":null,"abstract":"In this paper, a case study on control of BEOL defectivity in a systematic way for the future AI application is presented. A few novel methodologies were introduced to identify the source of defectivity in various BEOL sectors, such as, patterning, barrier deposition, plating, and CMP. We successfully reduced the defectivity to the level required to yield target AI devices.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"4 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a case study on control of BEOL defectivity in a systematic way for the future AI application is presented. A few novel methodologies were introduced to identify the source of defectivity in various BEOL sectors, such as, patterning, barrier deposition, plating, and CMP. We successfully reduced the defectivity to the level required to yield target AI devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向未来人工智能应用的BEOL缺陷控制系统研究
本文以系统控制BEOL缺陷为例,对未来的人工智能应用进行了研究。介绍了一些新的方法来确定各种BEOL部门的缺陷来源,如图案,屏障沉积,电镀和CMP。我们成功地将缺陷降低到生产目标人工智能设备所需的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematic Missing Pattern Defects Introduced by Topcoat Change at PC Lithography: A Case Study in the Tandem Usage of Inspection Methods Computational Process Control Compatible Dimensional Metrology Tool: Through-focus Scanning Optical Microscopy Characterization of Sub-micron Metal Line Arrays Using Picosecond Ultrasonics An Artificial Neural Network Based Algorithm For Real Time Dispatching Decisions A Framework for Semi-Automated Fault Detection Configuration with Automated Feature Extraction and Limits Setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1