{"title":"Inventory Control and Learning for One-Warehouse Multistore System with Censored Demand","authors":"Recep Yusuf Bekci, M. Gümüş, Sentao Miao","doi":"10.1287/opre.2021.0694","DOIUrl":null,"url":null,"abstract":"Efficient Learning Algorithms for Dynamic Inventory Allocation in Multiwarehouse Multistore Systems with Censored Demand Motivated by collaboration with a prominent fast-fashion retailer in Europe, the researchers focus their attention on the one-warehouse multistore (OWMS) inventory control problem, specifically addressing scenarios in which the demand distribution is unknown a priori. The OWMS problem revolves around a central warehouse that receives initial replenishments and subsequently distributes inventory to multiple stores within a finite time horizon. The objective lies in minimizing the total expected cost. To overcome the hurdles posed by the unknown demand distribution, the researchers propose a primal-dual algorithm that continuously learns from demand observations and dynamically adjusts inventory control decisions in real time. Thorough theoretical analysis and empirical evaluations highlight the promising performance of this approach, offering valuable insights for efficient inventory allocation within the ever-evolving retail industry.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"21 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2021.0694","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Efficient Learning Algorithms for Dynamic Inventory Allocation in Multiwarehouse Multistore Systems with Censored Demand Motivated by collaboration with a prominent fast-fashion retailer in Europe, the researchers focus their attention on the one-warehouse multistore (OWMS) inventory control problem, specifically addressing scenarios in which the demand distribution is unknown a priori. The OWMS problem revolves around a central warehouse that receives initial replenishments and subsequently distributes inventory to multiple stores within a finite time horizon. The objective lies in minimizing the total expected cost. To overcome the hurdles posed by the unknown demand distribution, the researchers propose a primal-dual algorithm that continuously learns from demand observations and dynamically adjusts inventory control decisions in real time. Thorough theoretical analysis and empirical evaluations highlight the promising performance of this approach, offering valuable insights for efficient inventory allocation within the ever-evolving retail industry.
期刊介绍:
Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.