S. Mohankumar, S. Harishbalaj, S. Satish, V.G. Kishore, K. Karthikeyan, C. Naveenkumar
{"title":"Computational Investigation on Phase Change Material based Hybrid Battery Thermal Management System for Electric Vehicle","authors":"S. Mohankumar, S. Harishbalaj, S. Satish, V.G. Kishore, K. Karthikeyan, C. Naveenkumar","doi":"10.4273/ijvss.14.7.06","DOIUrl":null,"url":null,"abstract":"The future of the automobile industry is moving towards the electrification of vehicles due to the increase in pollution and global warming. The thermal management of the battery is necessary to enhance the performance of the battery module at extreme operating conditions. Battery thermal management systems using phase change material can be used to control the temperature extremity and to achieve uniformity in temperature inside battery module. In this work, the conventional battery layout system is modified to induce the passive cooling with the use of PCM (paraffin wax) which has been placed around the periphery of each cell in the battery pack. Different thickness of PCM layer 2mm, 3mm and 4mm have been taken. This reduces the weight and cost compared to the existing PCM based BTMS. This also ensures improvise in the efficiency of the battery. The battery thermal behaviour is studied using ANSYS for various discharge rate condition (4C, 3C, 2C and 1C) with air assisted cooling system having an air flow rate of 4m/s. From the analysis, it is found that maximum temperature of a battery pack at 4C discharge rate without any BTMS is, about 60C. Elevated temperature of the battery pack covered with a PCM, for same discharge rate with same air flow rate for 2mm is 33.5C and for 3mm it is 34.4C and for 4mm it is 34.07C which falls under the optimal temperature. While adding expanded graphite to the PCM it is found that the temperature reduces to 30C for 2mm thickness PCM.","PeriodicalId":14391,"journal":{"name":"International Journal of Vehicle Structures and Systems","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Structures and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4273/ijvss.14.7.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The future of the automobile industry is moving towards the electrification of vehicles due to the increase in pollution and global warming. The thermal management of the battery is necessary to enhance the performance of the battery module at extreme operating conditions. Battery thermal management systems using phase change material can be used to control the temperature extremity and to achieve uniformity in temperature inside battery module. In this work, the conventional battery layout system is modified to induce the passive cooling with the use of PCM (paraffin wax) which has been placed around the periphery of each cell in the battery pack. Different thickness of PCM layer 2mm, 3mm and 4mm have been taken. This reduces the weight and cost compared to the existing PCM based BTMS. This also ensures improvise in the efficiency of the battery. The battery thermal behaviour is studied using ANSYS for various discharge rate condition (4C, 3C, 2C and 1C) with air assisted cooling system having an air flow rate of 4m/s. From the analysis, it is found that maximum temperature of a battery pack at 4C discharge rate without any BTMS is, about 60C. Elevated temperature of the battery pack covered with a PCM, for same discharge rate with same air flow rate for 2mm is 33.5C and for 3mm it is 34.4C and for 4mm it is 34.07C which falls under the optimal temperature. While adding expanded graphite to the PCM it is found that the temperature reduces to 30C for 2mm thickness PCM.
期刊介绍:
The International Journal of Vehicle Structures and Systems (IJVSS) is a quarterly journal and is published by MechAero Foundation for Technical Research and Education Excellence (MAFTREE), based in Chennai, India. MAFTREE is engaged in promoting the advancement of technical research and education in the field of mechanical, aerospace, automotive and its related branches of engineering, science, and technology. IJVSS disseminates high quality original research and review papers, case studies, technical notes and book reviews. All published papers in this journal will have undergone rigorous peer review. IJVSS was founded in 2009. IJVSS is available in Print (ISSN 0975-3060) and Online (ISSN 0975-3540) versions. The prime focus of the IJVSS is given to the subjects of modelling, analysis, design, simulation, optimization and testing of structures and systems of the following: 1. Automotive vehicle including scooter, auto, car, motor sport and racing vehicles, 2. Truck, trailer and heavy vehicles for road transport, 3. Rail, bus, tram, emerging transit and hybrid vehicle, 4. Terrain vehicle, armoured vehicle, construction vehicle and Unmanned Ground Vehicle, 5. Aircraft, launch vehicle, missile, airship, spacecraft, space exploration vehicle, 6. Unmanned Aerial Vehicle, Micro Aerial Vehicle, 7. Marine vehicle, ship and yachts and under water vehicles.