Being prepared in a sparse world: The case of KNN graph construction

A. Boutet, Anne-Marie Kermarrec, Nupur Mittal, François Taïani
{"title":"Being prepared in a sparse world: The case of KNN graph construction","authors":"A. Boutet, Anne-Marie Kermarrec, Nupur Mittal, François Taïani","doi":"10.1109/ICDE.2016.7498244","DOIUrl":null,"url":null,"abstract":"K-Nearest-Neighbor (KNN) graphs have emerged as a fundamental building block of many on-line services providing recommendation, similarity search and classification. Constructing a KNN graph rapidly and accurately is, however, a computationally intensive task. As data volumes keep growing, speed and the ability to scale out are becoming critical factors when deploying a KNN algorithm. In this work, we present KIFF, a generic, fast and scalable KNN graph construction algorithm. KIFF directly exploits the bipartite nature of most datasets to which KNN algorithms are applied. This simple but powerful strategy drastically limits the computational cost required to rapidly converge to an accurate KNN solution, especially for sparse datasets. Our evaluation on a representative range of datasets show that KIFF provides, on average, a speed-up factor of 14 against recent state-of-the art solutions while improving the quality of the KNN approximation by 18%.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"20 1","pages":"241-252"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

K-Nearest-Neighbor (KNN) graphs have emerged as a fundamental building block of many on-line services providing recommendation, similarity search and classification. Constructing a KNN graph rapidly and accurately is, however, a computationally intensive task. As data volumes keep growing, speed and the ability to scale out are becoming critical factors when deploying a KNN algorithm. In this work, we present KIFF, a generic, fast and scalable KNN graph construction algorithm. KIFF directly exploits the bipartite nature of most datasets to which KNN algorithms are applied. This simple but powerful strategy drastically limits the computational cost required to rapidly converge to an accurate KNN solution, especially for sparse datasets. Our evaluation on a representative range of datasets show that KIFF provides, on average, a speed-up factor of 14 against recent state-of-the art solutions while improving the quality of the KNN approximation by 18%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在稀疏世界中准备:KNN图构造的情况
k -最近邻(KNN)图已经成为许多在线服务的基本构建块,提供推荐、相似性搜索和分类。然而,快速准确地构建KNN图是一项计算密集型任务。随着数据量的不断增长,速度和向外扩展的能力成为部署KNN算法时的关键因素。本文提出了一种通用、快速、可扩展的KNN图构建算法KIFF。KIFF直接利用了KNN算法应用的大多数数据集的二分性。这种简单但功能强大的策略极大地限制了快速收敛到准确的KNN解决方案所需的计算成本,特别是对于稀疏数据集。我们对具有代表性的数据集范围的评估表明,相对于最新的最先进的解决方案,KIFF平均提供了14的加速因子,同时将KNN近似的质量提高了18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1