{"title":"Modelling boron diffusion for Fe2B layer formation: comparative kinetics analysis in pack-boronized AISI 4147 steel","authors":"M. Ortiz-Domínguez, M. Keddam","doi":"10.1515/mt-2023-0214","DOIUrl":null,"url":null,"abstract":"Abstract In this current research paper, the modelling of boron diffusion during the powder-pack boronizing was achieved by utilizing two kinetics approaches: the integral method and average diffusion coefficient (ADC) method. This integral method used a general solution of algebraic differential equations (DAEs) system. The powders mixture composed of: 33.5 wt% B4C, 5.4 wt% KBF4 and 61.1 wt% SiC was employed to generate the Fe2B layers on AISI 4147 steel in the interval of 1123–1273 K for 2–8 h. The obtained surface layers have been characterized by Scanning electron microscopy (SEM) to examine the growth front with a typical saw-toothed morphology. The crystalline nature of boride phase has been verified by X-ray diffraction technique (XRD). The calculation results arising from the two models led to the similar boron activation energy in Fe2B equal to 196.19 kJ mol−1. Additionally, both models were checked out empirically by selecting three extra boronizing conditions obtained at 1273 K for increasing times (2.5, 4.5 and 8.5 h). The predicted layers’ thicknesses were found to be in line with the experimental results.","PeriodicalId":18231,"journal":{"name":"Materials Testing","volume":"26 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Testing","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/mt-2023-0214","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this current research paper, the modelling of boron diffusion during the powder-pack boronizing was achieved by utilizing two kinetics approaches: the integral method and average diffusion coefficient (ADC) method. This integral method used a general solution of algebraic differential equations (DAEs) system. The powders mixture composed of: 33.5 wt% B4C, 5.4 wt% KBF4 and 61.1 wt% SiC was employed to generate the Fe2B layers on AISI 4147 steel in the interval of 1123–1273 K for 2–8 h. The obtained surface layers have been characterized by Scanning electron microscopy (SEM) to examine the growth front with a typical saw-toothed morphology. The crystalline nature of boride phase has been verified by X-ray diffraction technique (XRD). The calculation results arising from the two models led to the similar boron activation energy in Fe2B equal to 196.19 kJ mol−1. Additionally, both models were checked out empirically by selecting three extra boronizing conditions obtained at 1273 K for increasing times (2.5, 4.5 and 8.5 h). The predicted layers’ thicknesses were found to be in line with the experimental results.
期刊介绍:
Materials Testing is a SCI-listed English language journal dealing with all aspects of material and component testing with a special focus on transfer between laboratory research into industrial application. The journal provides first-hand information on non-destructive, destructive, optical, physical and chemical test procedures. It contains exclusive articles which are peer-reviewed applying respectively high international quality criterions.