Ananya Ghosh, Fidal V T, S. Sengupta, E. Bhattacharya
{"title":"Functionalized Silicon Nanoporous Membranes for Efficient Dialysis","authors":"Ananya Ghosh, Fidal V T, S. Sengupta, E. Bhattacharya","doi":"10.1109/icee44586.2018.8938002","DOIUrl":null,"url":null,"abstract":"Suitability of using ultrathin silicon nanoporous membranes (SNMs), fabricated using batch processes, for use in dialysis is investigated. In the present work, the diffusion of urea and creatinine through the SNMs were studied using two reservoirs containing the retentate and the permeate solution. Stirring of the solutions in the reservoirs was found to accelerate the diffusion process. Surface treatments on the SNM were carried out to prevent bio-fouling. Silanization followed by acid treatment was found to be the most effective method for preventing binding of urea on the SNM surface. Constant cycling in the trans-reservoir, maintained the concentration gradient of the dialysate and the diffusion increased significantly. The SNM appears to be a promising candidate for dialysis.","PeriodicalId":6590,"journal":{"name":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","volume":"22 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee44586.2018.8938002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Suitability of using ultrathin silicon nanoporous membranes (SNMs), fabricated using batch processes, for use in dialysis is investigated. In the present work, the diffusion of urea and creatinine through the SNMs were studied using two reservoirs containing the retentate and the permeate solution. Stirring of the solutions in the reservoirs was found to accelerate the diffusion process. Surface treatments on the SNM were carried out to prevent bio-fouling. Silanization followed by acid treatment was found to be the most effective method for preventing binding of urea on the SNM surface. Constant cycling in the trans-reservoir, maintained the concentration gradient of the dialysate and the diffusion increased significantly. The SNM appears to be a promising candidate for dialysis.