{"title":"Implementation of Deep Learning for Classification Type of Orange Using The Method Convolutional Neural Network","authors":"Irvan Denata, Tedy Rismawan, Ikhwan Ruslianto","doi":"10.31315/telematika.v18i3.5541","DOIUrl":null,"url":null,"abstract":"Orange is a type of fruit that is easily found in Sambas Regency. The types that are widely sold are Siam oranges, madu susu and susu. Each type of orange has a different quality and a different price. The price difference often results in fraud committed by traders against buyers to the detriment of the buyer. This is because differentiating types of oranges based on the appearance of the fruit does not have a standard. Therefore, in this study, a citrus fruit classification system was created based on images by implementing deep learning. The method of deep learning used in this research is Convolutional Neural Network (CNN) with AlexNet architecture. The types of oranges that will be observed are madu oranges, madu susu, and siam. The data used are 2250 images of oranges with each class totaling 750 images with a size of 227x227 pixels. The training data is 1575 images and the test data is 675 images. The training is carried out with a total of 10 epochs and each epoch will produce a model. System testing is carried out based on the model generated in the training process. Each model will be observed results in the form of accuracy which is calculated using a confusion matrix. The most optimal model was generated from training in epoch the 9th which resulted in an accuracy of 94.81%.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31315/telematika.v18i3.5541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Orange is a type of fruit that is easily found in Sambas Regency. The types that are widely sold are Siam oranges, madu susu and susu. Each type of orange has a different quality and a different price. The price difference often results in fraud committed by traders against buyers to the detriment of the buyer. This is because differentiating types of oranges based on the appearance of the fruit does not have a standard. Therefore, in this study, a citrus fruit classification system was created based on images by implementing deep learning. The method of deep learning used in this research is Convolutional Neural Network (CNN) with AlexNet architecture. The types of oranges that will be observed are madu oranges, madu susu, and siam. The data used are 2250 images of oranges with each class totaling 750 images with a size of 227x227 pixels. The training data is 1575 images and the test data is 675 images. The training is carried out with a total of 10 epochs and each epoch will produce a model. System testing is carried out based on the model generated in the training process. Each model will be observed results in the form of accuracy which is calculated using a confusion matrix. The most optimal model was generated from training in epoch the 9th which resulted in an accuracy of 94.81%.