Application Random Forest Method for Sentiment Analysis in Jamsostek Mobile Review

Tasya Auliya Ulul Azmi, Luthfi Hakim, D. C. R. Novitasari, W. D. Utami
{"title":"Application Random Forest Method for Sentiment Analysis in Jamsostek Mobile Review","authors":"Tasya Auliya Ulul Azmi, Luthfi Hakim, D. C. R. Novitasari, W. D. Utami","doi":"10.31315/telematika.v20i1.8868","DOIUrl":null,"url":null,"abstract":"Purpose: This study aims to monitor the service quality of JMO applications from time to time by classifying JMO user reviews into the class of positive, neutral, and negative sentiments.Design/methodology/approach : The method used in this study is the random forest classification method. Data processing in this study uses feature extraction, TF-IDF and labeling with the lexicon-based method.Findings/result: Based on the research results, it was found that the highest frequency of classification was the positive class with 17571 reviews compared to the neutral class with 8701 reviews and the negative class with 3876 reviews with an accuracy evaluation value of 93%, precision 88%, recall 93%, and f1-score 90%.Originality/value/state of the art:This study uses 150737 reviews that have been pre-processed using the random forest method and TF-IDF and lexicon-based feature extraction.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31315/telematika.v20i1.8868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aims to monitor the service quality of JMO applications from time to time by classifying JMO user reviews into the class of positive, neutral, and negative sentiments.Design/methodology/approach : The method used in this study is the random forest classification method. Data processing in this study uses feature extraction, TF-IDF and labeling with the lexicon-based method.Findings/result: Based on the research results, it was found that the highest frequency of classification was the positive class with 17571 reviews compared to the neutral class with 8701 reviews and the negative class with 3876 reviews with an accuracy evaluation value of 93%, precision 88%, recall 93%, and f1-score 90%.Originality/value/state of the art:This study uses 150737 reviews that have been pre-processed using the random forest method and TF-IDF and lexicon-based feature extraction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机森林方法在Jamsostek移动评论情感分析中的应用
目的:本研究旨在通过将JMO用户评论分为正面、中性和负面三类,对JMO应用的服务质量进行不定期的监测。设计/方法/方法:本研究采用随机森林分类方法。本研究的数据处理采用特征提取、TF-IDF和基于词典的标注方法。发现/结果:根据研究结果,分类频次最高的是正面类(17571条评论),中性类(8701条评论)和负面类(3876条评论),准确率评价值为93%,准确率88%,召回率93%,f1-score 90%。原创性/价值/技术水平:本研究使用150737条评论,这些评论已经使用随机森林方法、TF-IDF和基于词典的特征提取进行预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
期刊最新文献
Identification of Social Media Posts Containing Self-reported COVID-19 Symptoms using Triple Word Embeddings and Long Short-Term Memory Deep Learning for Histopathological Image Analysis: A Convolutional Neural Network Approach to Colon Cancer Classification Comparative Analysis of Classification Methods in Sentiment Analysis: The Impact of Feature Selection and Ensemble Techniques Optimization Optimizing Clustering of Indonesian Text Data Using Particle Swarm Optimization Algorithm: A Case Study of the Quran Translation Monitoring Development Board based on InfluxDB and Grafana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1