O. Bég, B. Vasu, A. Ray, T. Bég, A. Kadir, H. Leonard, R. Gorla
{"title":"Homotopy Simulation of Dissipative Micropolar Flow and Heat Transfer from a Two-Dimensional Body with Heat Sink Effect","authors":"O. Bég, B. Vasu, A. Ray, T. Bég, A. Kadir, H. Leonard, R. Gorla","doi":"10.15255/CABEQ.2020.1849","DOIUrl":null,"url":null,"abstract":"Non-Newtonian flow from a wedge constitutes a fundamental problem in chemical engineering systems and is relevant to processing of polymers, coating systems, etc. Motivated by such applications, the homotopy analysis method (HAM) was employed to obtain semi-analytical solutions for thermal convection boundary layer flow of incompressible micropolar fluid from a two-dimensional body (wedge). Viscous dissipation and heat sink effects were included. The non-dimensional boundary value problem emerges as a system of nonlinear coupled ordinary differential equations, by virtue of suitable coordinate transformations. The so-called Falkner-Skan flow cases are elaborated. Validation of the HAM solutions was achieved with earlier simpler models, as well as with a Nakamura finite difference method for the general model. The micropolar model employed simulates certain polymeric solutions quite accurately, and features rotary motions of micro-elements. Primary and secondary shear stress, wall couple stress, Nusselt number, microrotation velocity, and temperature were computed for the effect of vortex viscosity parameter (micropolar rheological), Eckert number (viscous dissipation), Falkner-Skan (pressure gradient) parameter, micro-inertia density, and heat sink parameter. The special cases of Blasius and stagnation flow were also addressed. It was observed from the study that the temperature and thermal boundary layer thickness are both suppressed with increasing wedge parameter and wall heat sink effect, which is beneficial to temperature regulation in polymer coating dynamics. Further, strong reverse spin was generated in the microrotation with increasing vortex viscosity, which resulted in increase in angular momentum boundary layer thickness. Also, both primary and secondary skin friction components were reduced with increasing wedge parameter. Nusselt number was also enhanced substantially with greater wedge parameter.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/CABEQ.2020.1849","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 8
Abstract
Non-Newtonian flow from a wedge constitutes a fundamental problem in chemical engineering systems and is relevant to processing of polymers, coating systems, etc. Motivated by such applications, the homotopy analysis method (HAM) was employed to obtain semi-analytical solutions for thermal convection boundary layer flow of incompressible micropolar fluid from a two-dimensional body (wedge). Viscous dissipation and heat sink effects were included. The non-dimensional boundary value problem emerges as a system of nonlinear coupled ordinary differential equations, by virtue of suitable coordinate transformations. The so-called Falkner-Skan flow cases are elaborated. Validation of the HAM solutions was achieved with earlier simpler models, as well as with a Nakamura finite difference method for the general model. The micropolar model employed simulates certain polymeric solutions quite accurately, and features rotary motions of micro-elements. Primary and secondary shear stress, wall couple stress, Nusselt number, microrotation velocity, and temperature were computed for the effect of vortex viscosity parameter (micropolar rheological), Eckert number (viscous dissipation), Falkner-Skan (pressure gradient) parameter, micro-inertia density, and heat sink parameter. The special cases of Blasius and stagnation flow were also addressed. It was observed from the study that the temperature and thermal boundary layer thickness are both suppressed with increasing wedge parameter and wall heat sink effect, which is beneficial to temperature regulation in polymer coating dynamics. Further, strong reverse spin was generated in the microrotation with increasing vortex viscosity, which resulted in increase in angular momentum boundary layer thickness. Also, both primary and secondary skin friction components were reduced with increasing wedge parameter. Nusselt number was also enhanced substantially with greater wedge parameter.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.