{"title":"Handwritten Signature Recognition: A Convolutional Neural Network Approach","authors":"Krishnaditya Kancharla, Varun Kamble, Mohit Kapoor","doi":"10.1109/ICACAT.2018.8933575","DOIUrl":null,"url":null,"abstract":"Handwritten Signature Recognition is an important behavioral biometric which is used for numerous identification and authentication applications. There are two fundamental methods of signature recognition, on-line or off-line. On-line recognition is a dynamic form, which uses parameters like writing pace, change in stylus direction and number of pen ups and pen downs during the writing of the signature. Off-line signature recognition is a static form where a signature is handled as an image and the author of the signature is predicted based on the features of the signature. The current method of Off-line Signature Recognition predominantly employs template matching, where a test image is compared with multiple specimen images to speculate the author of the signature. This takes up a lot of memory and has a higher time complexity. This paper proposes a method of off-line signature recognition using Convolution Neural Network. The purpose of this paper is to obtain high accuracy multi-class classification with a few training signature samples. Images are preprocessed to isolate the signature pixels from the background/noise pixels using a series of Image processing techniques. Initially, the system is trained with 27 genuine signatures of 10 different authors each. A Convolution Neural Network is used to predict a test signature belongs to which of the 10 given authors. Different public datasets are used to demonstrate effectiveness of the proposed solution.","PeriodicalId":6575,"journal":{"name":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","volume":"3 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACAT.2018.8933575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Handwritten Signature Recognition is an important behavioral biometric which is used for numerous identification and authentication applications. There are two fundamental methods of signature recognition, on-line or off-line. On-line recognition is a dynamic form, which uses parameters like writing pace, change in stylus direction and number of pen ups and pen downs during the writing of the signature. Off-line signature recognition is a static form where a signature is handled as an image and the author of the signature is predicted based on the features of the signature. The current method of Off-line Signature Recognition predominantly employs template matching, where a test image is compared with multiple specimen images to speculate the author of the signature. This takes up a lot of memory and has a higher time complexity. This paper proposes a method of off-line signature recognition using Convolution Neural Network. The purpose of this paper is to obtain high accuracy multi-class classification with a few training signature samples. Images are preprocessed to isolate the signature pixels from the background/noise pixels using a series of Image processing techniques. Initially, the system is trained with 27 genuine signatures of 10 different authors each. A Convolution Neural Network is used to predict a test signature belongs to which of the 10 given authors. Different public datasets are used to demonstrate effectiveness of the proposed solution.