{"title":"Wireless power and information transfer in closed space utilizing frequency selected surfaces","authors":"Masaya Tamura, Daigo Furusu, Ippei Takano","doi":"10.1109/MWSYM.2017.8058773","DOIUrl":null,"url":null,"abstract":"This paper presents a novel wireless power and information transfer (WPIT) in a closed space utilizing frequency selected surfaces (FSSs). The framework of a greenhouse or a building can be considered as the FSSs. Therefore, the frequency of the power provided to the sensors can be confined inside the frame-work and a communication frequency to the sensor can be transmitted and received from the outside. The concept using a metal mesh box with a shelf is demonstrated. First, it is confirmed that the power transfer frequency can be confined inside the box by S-parameters from port 1 to each received port and the electric field standing wave in the box. Then, it is demonstrated that the power can be transferred to the Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) sensors in the metal mesh box and the sensing data can be received outside the box.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"28 1","pages":"1046-1049"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8058773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper presents a novel wireless power and information transfer (WPIT) in a closed space utilizing frequency selected surfaces (FSSs). The framework of a greenhouse or a building can be considered as the FSSs. Therefore, the frequency of the power provided to the sensors can be confined inside the frame-work and a communication frequency to the sensor can be transmitted and received from the outside. The concept using a metal mesh box with a shelf is demonstrated. First, it is confirmed that the power transfer frequency can be confined inside the box by S-parameters from port 1 to each received port and the electric field standing wave in the box. Then, it is demonstrated that the power can be transferred to the Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) sensors in the metal mesh box and the sensing data can be received outside the box.