{"title":"Integrated design and analysis of a high-precision aerostatic spindle for internal grinding machines and its implementation perspectives","authors":"Songjie Yue, K. Cheng, Qing-Xi Bai, H. Ding","doi":"10.1177/13506501231184736","DOIUrl":null,"url":null,"abstract":"Aerostatic spindles are commonly employed in ultra-precision machines. The aerostatic spindle, as a critical key component for the development of industrial ultra-precision grinding machines, requires an industrial feasible precision engineering approach to robust design and optimization in order to render the high-precision spindle system. This paper presents such an approach to the design and development of aerostatic spindles and the associated digital virtual spindle systems based on multiscale modelling and analysis. Multiscale modelling and analysis combined with the virtual spindle simulation are used as the kernel of the virtual spindle system, including innovative design on the spindle system structure, fluid dynamics modelling, drive and control system, and the integration of the spindle electromechanical system, which can be used to systematically model and simulate both the static and dynamic performances of the aerostatic spindle system. Experiments are carried out to evaluate and validate the above approach and the virtual spindle simulations, which can be further utilized for the development of next-generation high-precision aerostatic spindle systems.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"12 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231184736","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aerostatic spindles are commonly employed in ultra-precision machines. The aerostatic spindle, as a critical key component for the development of industrial ultra-precision grinding machines, requires an industrial feasible precision engineering approach to robust design and optimization in order to render the high-precision spindle system. This paper presents such an approach to the design and development of aerostatic spindles and the associated digital virtual spindle systems based on multiscale modelling and analysis. Multiscale modelling and analysis combined with the virtual spindle simulation are used as the kernel of the virtual spindle system, including innovative design on the spindle system structure, fluid dynamics modelling, drive and control system, and the integration of the spindle electromechanical system, which can be used to systematically model and simulate both the static and dynamic performances of the aerostatic spindle system. Experiments are carried out to evaluate and validate the above approach and the virtual spindle simulations, which can be further utilized for the development of next-generation high-precision aerostatic spindle systems.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).