The Centrifugal Softening Effect of an Inverse Nonlinear Energy Harvester in Low-frequency Rotational Motion for Enhancing Performance

Xutao Mei, Shengxi Zhou, Bo Yang, T. Kaizuka, Kimihiko Nakano
{"title":"The Centrifugal Softening Effect of an Inverse Nonlinear Energy Harvester in Low-frequency Rotational Motion for Enhancing Performance","authors":"Xutao Mei, Shengxi Zhou, Bo Yang, T. Kaizuka, Kimihiko Nakano","doi":"10.1109/PowerMEMS49317.2019.41031604008","DOIUrl":null,"url":null,"abstract":"Recently, various nonlinear energy harvesters, which is aimed to provide the power supply for wireless sensors, are designed to harvest rotational energy. However, there are few studies for energy harvesting from rotational motion when the rotational speed is less than 120 rpm (2 Hz). In this paper, an inverse nonlinear piezoelectric energy harvester (PEH) is proposed for enhancing performance in low-frequency rotational motion via the centrifugal softening effect. In addition, according to Lagrange equation, the related theoretical model is derived. Furthermore, the experiments between the forward and inverse configurations in rotational motion are conducted under the rotational speeds ranging from 60 rpm to 160 rpm. The experimental results demonstrate that in low-frequency rotational motion the inverse PEH exhibits outstanding performance with the RMS voltage as high as 5 V, which is enough for powering some wireless sensors. Overall, the centrifugal softening effect is verified to be an effect method for energy harvesting in low-frequency rotational motion.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"18 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.41031604008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, various nonlinear energy harvesters, which is aimed to provide the power supply for wireless sensors, are designed to harvest rotational energy. However, there are few studies for energy harvesting from rotational motion when the rotational speed is less than 120 rpm (2 Hz). In this paper, an inverse nonlinear piezoelectric energy harvester (PEH) is proposed for enhancing performance in low-frequency rotational motion via the centrifugal softening effect. In addition, according to Lagrange equation, the related theoretical model is derived. Furthermore, the experiments between the forward and inverse configurations in rotational motion are conducted under the rotational speeds ranging from 60 rpm to 160 rpm. The experimental results demonstrate that in low-frequency rotational motion the inverse PEH exhibits outstanding performance with the RMS voltage as high as 5 V, which is enough for powering some wireless sensors. Overall, the centrifugal softening effect is verified to be an effect method for energy harvesting in low-frequency rotational motion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逆非线性能量采集器在低频旋转运动中的离心软化效应
近年来,各种旨在为无线传感器提供电源的非线性能量收集器被设计用于收集旋转能量。然而,对于转速小于120rpm (2hz)时的旋转运动能量收集的研究很少。本文提出了一种逆非线性压电能量采集器(PEH),利用离心软化效应提高其在低频旋转运动中的性能。此外,根据拉格朗日方程,推导了相关的理论模型。在60 ~ 160 rpm转速范围内,进行了正反两种构型的旋转运动实验。实验结果表明,在低频旋转运动中,反向PEH表现出优异的性能,其有效值高达5 V,足以为某些无线传感器供电。综上所述,离心软化效应是一种低频旋转运动能量收集的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Insulation Design of Portable Radioisotope Electrical Generators Multi-Megahertz IPT Systems for Biomedical Devices Applications Modeling and Analysis of a Piezoelectric Stick-slip Energy Harvester Thermal energy harvesting through the fur of endothermic animals Mems Ion Sources For Spectroscopic Identification Of Gaseous And Liquid Samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1