Trends and challenges in the circuit and macro of RRAM-based computing-in-memory systems

Chip Pub Date : 2022-03-01 DOI:10.1016/j.chip.2022.100004
Song-Tao Wei , Bin Gao , Dong Wu , Jian-Shi Tang , He Qian , Hua-Qiang Wu
{"title":"Trends and challenges in the circuit and macro of RRAM-based computing-in-memory systems","authors":"Song-Tao Wei ,&nbsp;Bin Gao ,&nbsp;Dong Wu ,&nbsp;Jian-Shi Tang ,&nbsp;He Qian ,&nbsp;Hua-Qiang Wu","doi":"10.1016/j.chip.2022.100004","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional von Neumann architecture faces many challenges in dealing with data-intensive artificial intelligence tasks efficiently due to huge amounts of data movement between physically separated data computing and storage units. Novel computing-in-memory (CIM) architecture implements data processing and storage in the same place, and thus can be much more energy-efficient than state-of-the-art von Neumann architecture. Compared with their counterparts, resistive random-access memory (RRAM)-based CIM systems could consume much less power and area when processing the same amount of data. In this paper, we first introduce the principles and challenges related to RRAM-based CIM systems. Then, recent works on the circuit and macro levels of RRAM-CIM systems will be reviewed to highlight the trends and challenges in this field.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"1 1","pages":"Article 100004"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472322000028/pdfft?md5=959475c4c0ee61fd75b74e572faf9857&pid=1-s2.0-S2709472322000028-main.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472322000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Conventional von Neumann architecture faces many challenges in dealing with data-intensive artificial intelligence tasks efficiently due to huge amounts of data movement between physically separated data computing and storage units. Novel computing-in-memory (CIM) architecture implements data processing and storage in the same place, and thus can be much more energy-efficient than state-of-the-art von Neumann architecture. Compared with their counterparts, resistive random-access memory (RRAM)-based CIM systems could consume much less power and area when processing the same amount of data. In this paper, we first introduce the principles and challenges related to RRAM-based CIM systems. Then, recent works on the circuit and macro levels of RRAM-CIM systems will be reviewed to highlight the trends and challenges in this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机存储器的内存计算系统在电路和宏方面的发展趋势和挑战
由于大量数据在物理上分离的数据计算和存储单元之间移动,传统的von Neumann架构在有效处理数据密集型人工智能任务时面临许多挑战。新颖的内存计算(CIM)体系结构在同一位置实现数据处理和存储,因此比最先进的von Neumann体系结构节能得多。与同类系统相比,基于电阻随机存取存储器(RRAM)的CIM系统在处理相同数量的数据时消耗的功率和面积要小得多。在本文中,我们首先介绍了与基于ram的CIM系统相关的原理和挑战。然后,回顾了ram - cim系统在电路和宏观层面上的最新工作,以突出该领域的趋势和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals Challenges and recent advances in HfO2-based ferroelectric films for non-volatile memory applications Channel-bias-controlled reconfigurable silicon nanowire transistors via an asymmetric electrode contact strategy Suspended nanomembrane silicon photonic integrated circuits Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1