{"title":"MODEL-BASED OPTIMIZATION OF CYCLES OF CO2 WATER-ALTERNATING-GAS (CO2-WAG) INJECTION IN CARBONATE RESERVOIR","authors":"F. Pereira, V. Botechia, D. Schiozer","doi":"10.5419/bjpg2021-0012","DOIUrl":null,"url":null,"abstract":"Pre-salt reservoirs are among the most important discoveries in recent decades due to the large quantities of oil in them. However, high levels of uncertainties related to its large gas/CO2 production prompt a more complex gas/CO2 management, including the use of alternating water and gas/CO2 injection (WAG) as a recovery mechanism to increase oil recovery from the field. The purpose of this work is to develop a methodology to manage cycle sizes of the WAG/CO2, and analyze the impact of other variables related to the management of producing wells during the process. The methodology was applied to a benchmark synthetic reservoir model with pre-salt characteristics. We used five approaches to evaluate the optimum cycle size under study, also assessing the impact of the management of producing wells: (A) without closing producers due to gas-oil ratio (GOR) limit; (B) GOR limit fixed at a fixed value (1600 m³/m³) for all wells; (C) GOR limit optimized per well; (D) joint optimization between GOR limit values of producers and WAG cycles; and (E) optimization of the cycle size per injector well with an optimized GOR limit. The results showed that the optimum cycle size depends on the management of the producers. Leaving all production wells open until the end of the field's life (without closing based on the GOR limit) or controlling the wells in a more restricted manner (with closing based on the GOR limit), led to significant variation of the results (optimal size of the WAG/CO2 cycles). Our study, therefore, demonstrates that the optimum cycle size depends on other control variables and can change significantly due to these variables. This work presents a study that aimed to manage the WAG-CO2 injection cycle size by optimizing the life cycle control variables to obtain better economic performance within the premises already established, such as the total reinjection of gas/CO2 produced, also analyzing the impact of other variables (management of producing wells) along with the WAG-CO2 cycles.","PeriodicalId":9312,"journal":{"name":"Brazilian Journal of Petroleum and Gas","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Petroleum and Gas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5419/bjpg2021-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Pre-salt reservoirs are among the most important discoveries in recent decades due to the large quantities of oil in them. However, high levels of uncertainties related to its large gas/CO2 production prompt a more complex gas/CO2 management, including the use of alternating water and gas/CO2 injection (WAG) as a recovery mechanism to increase oil recovery from the field. The purpose of this work is to develop a methodology to manage cycle sizes of the WAG/CO2, and analyze the impact of other variables related to the management of producing wells during the process. The methodology was applied to a benchmark synthetic reservoir model with pre-salt characteristics. We used five approaches to evaluate the optimum cycle size under study, also assessing the impact of the management of producing wells: (A) without closing producers due to gas-oil ratio (GOR) limit; (B) GOR limit fixed at a fixed value (1600 m³/m³) for all wells; (C) GOR limit optimized per well; (D) joint optimization between GOR limit values of producers and WAG cycles; and (E) optimization of the cycle size per injector well with an optimized GOR limit. The results showed that the optimum cycle size depends on the management of the producers. Leaving all production wells open until the end of the field's life (without closing based on the GOR limit) or controlling the wells in a more restricted manner (with closing based on the GOR limit), led to significant variation of the results (optimal size of the WAG/CO2 cycles). Our study, therefore, demonstrates that the optimum cycle size depends on other control variables and can change significantly due to these variables. This work presents a study that aimed to manage the WAG-CO2 injection cycle size by optimizing the life cycle control variables to obtain better economic performance within the premises already established, such as the total reinjection of gas/CO2 produced, also analyzing the impact of other variables (management of producing wells) along with the WAG-CO2 cycles.