mvPPT: A Highly Efficient and Sensitive Pathogenicity Prediction Tool for Missense Variants

S. Tong, Ke Fan, Zai-wei Zhou, Lin-Yun Liu, Shu-Qing Zhang, Yinghui Fu, Guangchao Wang, Ying Zhu, Yong-Chun Yu
{"title":"mvPPT: A Highly Efficient and Sensitive Pathogenicity Prediction Tool for Missense Variants","authors":"S. Tong, Ke Fan, Zai-wei Zhou, Lin-Yun Liu, Shu-Qing Zhang, Yinghui Fu, Guangchao Wang, Ying Zhu, Yong-Chun Yu","doi":"10.1101/2022.01.05.475156","DOIUrl":null,"url":null,"abstract":"Next generation sequencing technologies both boost the discovery of variants in the human genome and exacerbate the challenges of pathogenic variant identification. In this study, we developed mvPPT (Pathogenicity Prediction Tool for missense variants), a highly sensitive and accurate missense variant classifier based on gradient boosting. MvPPT adopts high-confidence training sets with a wide spectrum of variant profiles, and extracts three categories of features, including scores from existing prediction tools, allele, amino acid and genotype frequencies, and genomic context. Compared with established predictors, mvPPT achieved superior performance in all test sets, regardless of data source. In addition, our study also provides guidance for training set and feature selection strategies, as well as reveals highly relevant features, which may further provide biological insights of variant pathogenicity.","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":"2 1","pages":"414 - 426"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2022.01.05.475156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Next generation sequencing technologies both boost the discovery of variants in the human genome and exacerbate the challenges of pathogenic variant identification. In this study, we developed mvPPT (Pathogenicity Prediction Tool for missense variants), a highly sensitive and accurate missense variant classifier based on gradient boosting. MvPPT adopts high-confidence training sets with a wide spectrum of variant profiles, and extracts three categories of features, including scores from existing prediction tools, allele, amino acid and genotype frequencies, and genomic context. Compared with established predictors, mvPPT achieved superior performance in all test sets, regardless of data source. In addition, our study also provides guidance for training set and feature selection strategies, as well as reveals highly relevant features, which may further provide biological insights of variant pathogenicity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mvPPT:一种高效灵敏的错义变异致病性预测工具
下一代测序技术既促进了人类基因组变异的发现,又加剧了致病变异鉴定的挑战。在这项研究中,我们开发了mvPPT(病原性预测工具错义变异),一个高度敏感和准确的基于梯度增强的错义变异分类器。MvPPT采用具有广泛变异谱的高置信度训练集,并提取三大类特征,包括现有预测工具的得分、等位基因、氨基酸和基因型频率以及基因组背景。与已建立的预测器相比,无论数据源如何,mvPPT在所有测试集中都具有优越的性能。此外,我们的研究还为训练集和特征选择策略提供了指导,并揭示了高度相关的特征,这可能进一步提供变异致病性的生物学见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iMFP-LG: Identification of Novel Multi-Functional Peptides by Using Protein Language Models and Graph-Based Deep Learning. ProtPipe: A Multifunctional Data Analysis Pipeline for Proteomics and Peptidomics. VISTA: A Tool for Fast Taxonomic Assignment of Viral Genome Sequences. Pangenome Reveals Gene Content Variations and Structural Variants Contributing to Pig Characteristics. SoyOD: An Integrated Soybean Multi-omics Database for Mining Genes and Biological Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1