TREBLE SEARCH OPTIMIZER: A STOCHASTIC OPTIMIZATION TO OVERCOME BOTH UNIMODAL AND MULTIMODAL PROBLEMS

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY IIUM Engineering Journal Pub Date : 2023-07-04 DOI:10.31436/iiumej.v24i2.2700
P. Kusuma, Ashri Dinimaharawati
{"title":"TREBLE SEARCH OPTIMIZER: A STOCHASTIC OPTIMIZATION TO OVERCOME BOTH UNIMODAL AND MULTIMODAL PROBLEMS","authors":"P. Kusuma, Ashri Dinimaharawati","doi":"10.31436/iiumej.v24i2.2700","DOIUrl":null,"url":null,"abstract":"Today, many metaheuristics have used metaphors as their inspiration and baseline for novelty. It makes the novel strategy of these metaheuristics difficult to investigate. Moreover, many metaheuristics use high iteration or swarm size in their first introduction. Based on this consideration, this work proposes a new metaheuristic free from metaphor. This metaheuristic is called treble search optimizer (TSO), representing its main concept in performing three searches performed by each member in each iteration. These three searches consist of two directed searches and one random search. Several seeds are generated from each search. Then, these searches are compared with each other to find the best seed that might substitute the current corresponding member. TSO is also designed to overcome the optimization problem in the low iteration or swarm size circumstance. In this paper, TSO is challenged to overcome the 23 classic optimization functions. In this experiment, TSO is compared with five shortcoming metaheuristics: slime mould algorithm (SMA), hybrid pelican komodo algorithm (HPKA), mixed leader-based optimizer (MLBO), golden search optimizer (GSO), and total interaction algorithm (TIA). The result shows that TSO performs effectively and outperforms these five metaheuristics by making better fitness scores than SMA, HPKA, MLBO, GSO, and TIA in overcoming 21, 21, 23, 23, and 17 functions, consecutively. The result also indicates that TSO performs effectively in overcoming unimodal and multimodal problems in the low iteration and swarm size.\nABSTRAK: Dewasa ini, terdapat ramai metaheuristik menggunakan metafora sebagai inspirasi dan garis dasar pembaharuan. Ini menyebabkan strategi baharu metaheuristik ini susah untuk dikaji. Tambahan, ramai metaheuristik menggunakan ulangan berulang atau saiz kerumunan dalam pengenalan mereka. Berdasarkan penilaian ini, kajian ini mencadangkan metaheuristk baharu bebas metafora. Metaheuristik ini dipanggil pengoptimum pencarian ganda tiga (TSO), mewakilkan konsep utama dalam pemilihan tiga pencarian yang dilakukan oleh setiap ahli dalam setiap ulangan. Ketiga-tiga carian ini terdiri daripada dua pencarian terarah dan satu pencarian rawak. Beberapa benih dihasilkan dalam setiap carian. Kemudian, carian ini dibandingkan antara satu sama lain bagi mencari benih terbaik yang mungkin berpotensi menggantikan ahli yang sedang digunakan. TSO juga direka  bagi mengatasi masalah pengoptimuman dalam ulangan rendah atau lingkungan saiz kerumunan. Kajian ini TSO dicabar bagi mengatasi 23 fungsi pengoptimuman klasik. Eksperimen ini TSO dibandingkan dengan lima kekurangan metaheuristik: algoritma acuan lendir (SMA), algorithma hibrid komodo burung undan (HPKA), Pengoptimum Campuran berdasarkan-Ketua (MLBO), Pengoptimuman Carian Emas (GSO), dan algoritma jumlah interaksi (TIA). Dapatan kajian menunjukkan TSO berkesan menghasilkan dan lebih baik daripada kelima-lima metaheuristik dengan menghasilkan pemarkahan padanan terbaik berbanding SMA, HPKA, MLBO, GSO, dan TIA dalam mengatasi fungsi 21, 21, 23, 23, dan 17, secara berurutan. Dapatan kajian juga menunjukkan TSO turut berperanan efektif dalam mengatasi masalah modal tunggal dan modal ganda dalam iterasi rendah dan saiz kerumunan.","PeriodicalId":13439,"journal":{"name":"IIUM Engineering Journal","volume":"14 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIUM Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31436/iiumej.v24i2.2700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Today, many metaheuristics have used metaphors as their inspiration and baseline for novelty. It makes the novel strategy of these metaheuristics difficult to investigate. Moreover, many metaheuristics use high iteration or swarm size in their first introduction. Based on this consideration, this work proposes a new metaheuristic free from metaphor. This metaheuristic is called treble search optimizer (TSO), representing its main concept in performing three searches performed by each member in each iteration. These three searches consist of two directed searches and one random search. Several seeds are generated from each search. Then, these searches are compared with each other to find the best seed that might substitute the current corresponding member. TSO is also designed to overcome the optimization problem in the low iteration or swarm size circumstance. In this paper, TSO is challenged to overcome the 23 classic optimization functions. In this experiment, TSO is compared with five shortcoming metaheuristics: slime mould algorithm (SMA), hybrid pelican komodo algorithm (HPKA), mixed leader-based optimizer (MLBO), golden search optimizer (GSO), and total interaction algorithm (TIA). The result shows that TSO performs effectively and outperforms these five metaheuristics by making better fitness scores than SMA, HPKA, MLBO, GSO, and TIA in overcoming 21, 21, 23, 23, and 17 functions, consecutively. The result also indicates that TSO performs effectively in overcoming unimodal and multimodal problems in the low iteration and swarm size. ABSTRAK: Dewasa ini, terdapat ramai metaheuristik menggunakan metafora sebagai inspirasi dan garis dasar pembaharuan. Ini menyebabkan strategi baharu metaheuristik ini susah untuk dikaji. Tambahan, ramai metaheuristik menggunakan ulangan berulang atau saiz kerumunan dalam pengenalan mereka. Berdasarkan penilaian ini, kajian ini mencadangkan metaheuristk baharu bebas metafora. Metaheuristik ini dipanggil pengoptimum pencarian ganda tiga (TSO), mewakilkan konsep utama dalam pemilihan tiga pencarian yang dilakukan oleh setiap ahli dalam setiap ulangan. Ketiga-tiga carian ini terdiri daripada dua pencarian terarah dan satu pencarian rawak. Beberapa benih dihasilkan dalam setiap carian. Kemudian, carian ini dibandingkan antara satu sama lain bagi mencari benih terbaik yang mungkin berpotensi menggantikan ahli yang sedang digunakan. TSO juga direka  bagi mengatasi masalah pengoptimuman dalam ulangan rendah atau lingkungan saiz kerumunan. Kajian ini TSO dicabar bagi mengatasi 23 fungsi pengoptimuman klasik. Eksperimen ini TSO dibandingkan dengan lima kekurangan metaheuristik: algoritma acuan lendir (SMA), algorithma hibrid komodo burung undan (HPKA), Pengoptimum Campuran berdasarkan-Ketua (MLBO), Pengoptimuman Carian Emas (GSO), dan algoritma jumlah interaksi (TIA). Dapatan kajian menunjukkan TSO berkesan menghasilkan dan lebih baik daripada kelima-lima metaheuristik dengan menghasilkan pemarkahan padanan terbaik berbanding SMA, HPKA, MLBO, GSO, dan TIA dalam mengatasi fungsi 21, 21, 23, 23, dan 17, secara berurutan. Dapatan kajian juga menunjukkan TSO turut berperanan efektif dalam mengatasi masalah modal tunggal dan modal ganda dalam iterasi rendah dan saiz kerumunan.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三重搜索优化器:一种克服单峰和多峰问题的随机优化
今天,许多元启发式已经使用隐喻作为他们的灵感和基线的新颖性。这使得这些元启发式的新策略难以研究。此外,许多元启发式在首次引入时使用高迭代或群体规模。在此基础上,本文提出了一种不含隐喻的元启发式。这种元启发式被称为三重搜索优化器(TSO),它的主要概念是在每次迭代中由每个成员执行三次搜索。这三次搜索包括两次定向搜索和一次随机搜索。每次搜索都会生成几个种子。然后,将这些搜索结果相互比较,以找到可能替代当前对应成员的最佳种子。该算法还克服了低迭代或群体规模情况下的优化问题。在本文中,TSO克服了23个经典优化函数的挑战。在本实验中,将TSO算法与黏菌算法(SMA)、混合鹈鹕科莫多算法(HPKA)、基于混合领导者的优化器(MLBO)、黄金搜索优化器(GSO)和总交互算法(TIA)五种缺点元启发式算法进行了比较。结果表明,TSO算法在克服21、21、23、23和17个函数上的适应度得分优于SMA、HPKA、MLBO、GSO和TIA。结果还表明,该算法可以有效地克服低迭代和低群规模下的单峰和多峰问题。摘要:Dewasa ini, terdapat ramai元启发式,menggunakan元启发式,sebagai启发,dan garis dasar pembaharan。元启发式理论是一种新方法。Tambahan, ramai meta - heuristik menggunakan ulangan berulang atau saiz kerumunan dalam pengenalan mereka。Berdasarkan penilaiini, kajian ini mencadangkan meta - heuristk baharu bebas meta - forth。meta - heuristik ini dipanggil pengoptimum pencarian ganda tiga (TSO), mewakilkan konsep utama dalam pemilihan tiga pencarian yang dilakukan oleh setiap ahli dalam setiap ulangan。Ketiga-tiga carian ini terdiri daripada dua pencarian terarah dan satu pencarian rawak。Beberapa benih dihasilkan dalam setiap carian。Kemudian, carian, dibandingkan, antara, satu sama lain, bagi mencari, terbaik, yang mungkin, berpotensi, menggantikan, ahli, yang sedang, digunakan。TSO juga direka bagi mengatasi masalah pengoptimuman dalam ulangan rendah atau lingkungan saiz kerumunan。[2] [1] [1] [1] [3] [1] [3]本文采用元启发式方法:SMA算法、混合komodo burung - undan算法、MLBO算法、GSO算法、TIA算法。Dapatan kajian menunjukkan TSO berkesan menghasilkan danlebih baik daripada kelima-lima meta - heurisk dengan menghasilkan pemarkahan padanan terbaik berbanding SMA, HPKA, MLBO, GSO, dan TIA dalam mengatasi真菌21,21,23,23,dan 17, secara berurutan。达巴坦·卡吉安·巴吉安·卡吉安·卡吉安·卡吉安·卡吉安·卡吉安·卡吉安·卡吉安·卡吉安·卡吉安
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IIUM Engineering Journal
IIUM Engineering Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
20.00%
发文量
57
审稿时长
40 weeks
期刊介绍: The IIUM Engineering Journal, published biannually (June and December), is a peer-reviewed open-access journal of the Faculty of Engineering, International Islamic University Malaysia (IIUM). The IIUM Engineering Journal publishes original research findings as regular papers, review papers (by invitation). The Journal provides a platform for Engineers, Researchers, Academicians, and Practitioners who are highly motivated in contributing to the Engineering disciplines, and Applied Sciences. It also welcomes contributions that address solutions to the specific challenges of the developing world, and address science and technology issues from an Islamic and multidisciplinary perspective. Subject areas suitable for publication are as follows: -Chemical and Biotechnology Engineering -Civil and Environmental Engineering -Computer Science and Information Technology -Electrical, Computer, and Communications Engineering -Engineering Mathematics and Applied Science -Materials and Manufacturing Engineering -Mechanical and Aerospace Engineering -Mechatronics and Automation Engineering
期刊最新文献
PHOTOVOLTAIC MODULE TEMPERATURE ESTIMATION MODEL FOR THE ONE-TIME-POINT DAILY ESTIMATION METHOD BIPHASIC CRUDE PALM OIL DECHLORINATION: EFFECT OF VOLUME RATIO AND CONCENTRATION OF SODIUM SILICATE TO HYDROXIDE ION DISTRIBUTION MIXING SEQUENCE EFFECT OF CEMENT COMPOSITES WITH CARBON FIBRES EFFECTS OF SOIL ERODIBILITY ON RIVERBANK EROSION AND FAILURES KEY SUCCESS FACTORS IN ROAD MAINTENANCE MANAGEMENT PROJECTS (A CASE STUDY OF MAYSAN PROVINCE, IRAQ)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1