{"title":"Zeolite-based cracking catalysts for bio-oil upgrading: A critical review","authors":"Nichaboon Chaihad , Surachai Karnjanakom , Abuliti Abudula , Guoqing Guan","doi":"10.1016/j.recm.2022.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Fast pyrolysis of biomass is an attractive way to produce bio-oil since it can convert most of biomass components directly into liquid fuel. However, the bio-oils obtained from such a fast pyrolysis process always have highly complex oxygenated compounds with high viscosity, serious corrosivity, and rather instability. Thus, before the raw bio-oils are used as fuel or chemical feedstock, they must be upgraded, especially deoxygenated. Cracking of bio-oils over porous solid catalysts such as zeolite-based catalysts at ambient pressure is considered one of effective ways for the bio-oil upgrading, especially in which hydrogen gas is not necessary. Herein, zeolite-based catalysts (mainly HZSM-5 based catalysts) for the upgrading of pyrolysis bio-oils are critically reviewed. The effects of porous structure, acidity and other parameters including biomass type, biomass/catalyst ratio and operation temperature on cracking activity, selectivity, stability and deactivation are summarized. While, the proposed mechanisms on the bio-oil upgrading over the zeolite-based catalysts and the possibility for the application of the developed catalysts in the industrial process are discussed. Furthermore, the main strategies including metal modification, construction of zeolites with a hierarchical structure and synthesis of special morphologies with hollow structure or core/shell structure and nanosheet structures for the improvement of deoxygenation property performance are introduced. It is expected to provide a guidance for the design and fabricate more excellent zeolite-based catalysts and their application for high-quality bio-oil production from fast biomass pyrolysis.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 2","pages":"Pages 167-183"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000186/pdfft?md5=e51486427e37ec243e7cc2636004414b&pid=1-s2.0-S2772443322000186-main.pdf","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Chemicals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772443322000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Fast pyrolysis of biomass is an attractive way to produce bio-oil since it can convert most of biomass components directly into liquid fuel. However, the bio-oils obtained from such a fast pyrolysis process always have highly complex oxygenated compounds with high viscosity, serious corrosivity, and rather instability. Thus, before the raw bio-oils are used as fuel or chemical feedstock, they must be upgraded, especially deoxygenated. Cracking of bio-oils over porous solid catalysts such as zeolite-based catalysts at ambient pressure is considered one of effective ways for the bio-oil upgrading, especially in which hydrogen gas is not necessary. Herein, zeolite-based catalysts (mainly HZSM-5 based catalysts) for the upgrading of pyrolysis bio-oils are critically reviewed. The effects of porous structure, acidity and other parameters including biomass type, biomass/catalyst ratio and operation temperature on cracking activity, selectivity, stability and deactivation are summarized. While, the proposed mechanisms on the bio-oil upgrading over the zeolite-based catalysts and the possibility for the application of the developed catalysts in the industrial process are discussed. Furthermore, the main strategies including metal modification, construction of zeolites with a hierarchical structure and synthesis of special morphologies with hollow structure or core/shell structure and nanosheet structures for the improvement of deoxygenation property performance are introduced. It is expected to provide a guidance for the design and fabricate more excellent zeolite-based catalysts and their application for high-quality bio-oil production from fast biomass pyrolysis.