{"title":"Insulator nondestructive testing based on VGGNet algorithm","authors":"Ma Lixin, Dou Chenfei, Song Chencan, Yan Tianxiao","doi":"10.12086/OEE.2021.200072","DOIUrl":null,"url":null,"abstract":"In the power system, it is difficult to detect the insulator's deterioration in operation. Aiming at this problem, this thesis applies the convolution neural network algorithm to evaluate the insulator's deterioration degree based on the deep analysis of the principle and structure of the convolution neural network model. Firstly, the power frequency flashover test was conducted on the insulator to produce three states as follows: no discharge, weak discharge, and strong discharge. Moreover, the Ultraviolet imager was applied to collect the insulator's ultraviolet images in different discharge state to establish the ultraviolet images sample library. Subsequently, the VGGNet framework neural network algorithm was applied to perform the classification training and the state-prediction evaluation on the samples so as to eventually achieve the purpose of judging whether the insulator is degraded. From the experimental results, it can be seen that the accuracy rate of the algorithm is as high as 98.4%, which has broad application prospects in the insulator's degradation detection. Furthermore, it provides a mentality for the reliability detection of other power equipments.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"5 1","pages":"200072"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In the power system, it is difficult to detect the insulator's deterioration in operation. Aiming at this problem, this thesis applies the convolution neural network algorithm to evaluate the insulator's deterioration degree based on the deep analysis of the principle and structure of the convolution neural network model. Firstly, the power frequency flashover test was conducted on the insulator to produce three states as follows: no discharge, weak discharge, and strong discharge. Moreover, the Ultraviolet imager was applied to collect the insulator's ultraviolet images in different discharge state to establish the ultraviolet images sample library. Subsequently, the VGGNet framework neural network algorithm was applied to perform the classification training and the state-prediction evaluation on the samples so as to eventually achieve the purpose of judging whether the insulator is degraded. From the experimental results, it can be seen that the accuracy rate of the algorithm is as high as 98.4%, which has broad application prospects in the insulator's degradation detection. Furthermore, it provides a mentality for the reliability detection of other power equipments.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing