W. Nabgan, B. Nabgan, T. Abdullah, N. Ngadi, A. A. Jalil, A. H. Nordin, Nurzila Abd. Latif, Noor Fathiah Haziqah Othman
{"title":"Hydrogen Production from Catalytic Polyethylene Terephthalate Waste Reforming Reaction, an overview","authors":"W. Nabgan, B. Nabgan, T. Abdullah, N. Ngadi, A. A. Jalil, A. H. Nordin, Nurzila Abd. Latif, Noor Fathiah Haziqah Othman","doi":"10.1515/cse-2020-0005","DOIUrl":null,"url":null,"abstract":"Abstract As a sustainable and renewable energy carrier for transition, hydrogen is considered as a key future fuel for the low carbon energy systems. During the past few decades, attention has been given to the conversion of waste materials, including plastics to the production of hydrogen. Studies in this field are of great importance because they resolve numerous problems brought about by plastic waste with other forms of waste. Polyethylene terephthalate (PET) is one of the major products of plastic waste which constitutes a major threat to environmental conservation efforts and harms living organism. Phenol has been chosen in this study as a solvent for PET to produce hydrogen because of unwanted liquid product in the bio-oil. This research investigates catalytic steam reforming of phenol with dissolved PET for hydrogen production. The aim of this study was the review of a highly active and stable catalyst for hydrogen production from steam reforming waste products. The analysis of product composition indicated that steam reforming of PET-phenol generally produced a high amount of aliphatic branched-chain compounds, together with a moderate amount of cyclic compounds. The reaction conditions also led to the alkylation of phenol by the reforming products from the PET-phenol solution with and without the catalyst. In conclusion, this study explored new ways to use l product derived from waste plastic materials. It provides a promising clean technology, which employed polyethylene terephthalate waste dissolved in phenol (as a solvent) for hydrogen production.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"8 1","pages":"45 - 64"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cse-2020-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract As a sustainable and renewable energy carrier for transition, hydrogen is considered as a key future fuel for the low carbon energy systems. During the past few decades, attention has been given to the conversion of waste materials, including plastics to the production of hydrogen. Studies in this field are of great importance because they resolve numerous problems brought about by plastic waste with other forms of waste. Polyethylene terephthalate (PET) is one of the major products of plastic waste which constitutes a major threat to environmental conservation efforts and harms living organism. Phenol has been chosen in this study as a solvent for PET to produce hydrogen because of unwanted liquid product in the bio-oil. This research investigates catalytic steam reforming of phenol with dissolved PET for hydrogen production. The aim of this study was the review of a highly active and stable catalyst for hydrogen production from steam reforming waste products. The analysis of product composition indicated that steam reforming of PET-phenol generally produced a high amount of aliphatic branched-chain compounds, together with a moderate amount of cyclic compounds. The reaction conditions also led to the alkylation of phenol by the reforming products from the PET-phenol solution with and without the catalyst. In conclusion, this study explored new ways to use l product derived from waste plastic materials. It provides a promising clean technology, which employed polyethylene terephthalate waste dissolved in phenol (as a solvent) for hydrogen production.