Anti-Biofouling of a Novel Cross-Linked Copolymer Containing a HMBA Side Chain

Qiang Wang, Zhuang Yu, L. Yu
{"title":"Anti-Biofouling of a Novel Cross-Linked Copolymer Containing a HMBA Side Chain","authors":"Qiang Wang, Zhuang Yu, L. Yu","doi":"10.4028/www.scientific.net/JBBTE.10.1","DOIUrl":null,"url":null,"abstract":"Biofouling on underwater engineered structures, especially on ship hulls, results in increased operational and maintenance costs. Fouling is not only of an ecological interest, but it is also important from applied and commercial perspectives. With the development of society, widely used Tributyltin compounds (TBT) for biofouling control have been prohibited worldwide at the end of 2008. The need to develop new environment friendly antifouling agents has been highlighted. Herein we report on the synthesis and characterization of a novel cross-linkable copolymer containing a HMBA side chain. The paper is mainly focused on the synthesis of novel resin and its antifouling performance. Apart from use of acrylate monomer, the two other important monomers γ-methacryloxypropyltrimethoxysilane (HD-70) and N-(4-Hydroxy-3-Methoxy-Benzyl) acrylanine (HMBA) were selected to construct low surface energy materials. Finally, the antifouling properties of resins were carried through by the colonization of benthic diatoms (Nitzschia flosterium) and ocean plates of an offshore platform. Experimental results indicated the novel resins containing a HMBA side chain possessing better antifouling properties than a standard polydimethyl siloxane (PDMS) coating in the Qingdao ocean.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"46 1","pages":"1 - 5"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.10.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biofouling on underwater engineered structures, especially on ship hulls, results in increased operational and maintenance costs. Fouling is not only of an ecological interest, but it is also important from applied and commercial perspectives. With the development of society, widely used Tributyltin compounds (TBT) for biofouling control have been prohibited worldwide at the end of 2008. The need to develop new environment friendly antifouling agents has been highlighted. Herein we report on the synthesis and characterization of a novel cross-linkable copolymer containing a HMBA side chain. The paper is mainly focused on the synthesis of novel resin and its antifouling performance. Apart from use of acrylate monomer, the two other important monomers γ-methacryloxypropyltrimethoxysilane (HD-70) and N-(4-Hydroxy-3-Methoxy-Benzyl) acrylanine (HMBA) were selected to construct low surface energy materials. Finally, the antifouling properties of resins were carried through by the colonization of benthic diatoms (Nitzschia flosterium) and ocean plates of an offshore platform. Experimental results indicated the novel resins containing a HMBA side chain possessing better antifouling properties than a standard polydimethyl siloxane (PDMS) coating in the Qingdao ocean.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型含HMBA侧链交联共聚物的抗生物污染性能
水下工程结构,特别是船体上的生物污垢会增加运营和维护成本。污染不仅具有生态意义,而且从应用和商业角度来看也很重要。随着社会的发展,广泛应用于生物污染防治的三丁基锡化合物(TBT)已于2008年底在世界范围内被禁止使用。开发新型环保型防污剂的必要性日益突出。本文报道了一种含有HMBA侧链的新型交联共聚物的合成和表征。本文主要研究了新型树脂的合成及其防污性能。除了使用丙烯酸酯单体外,还选择了另外两种重要单体γ-甲基丙烯氧基丙基三甲氧基硅烷(HD-70)和N-(4-羟基-3-甲氧基苄基)丙烯胺(HMBA)来构建低表面能材料。最后,树脂的防污性能通过底栖硅藻(Nitzschia flosterium)和海洋平台的海洋板块的定植来实现。实验结果表明,含HMBA侧链的新型树脂比标准聚二甲基硅氧烷(PDMS)涂层具有更好的防污性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A biomechanical device for human sensorimotor function Programmable materials for mechanobiology Grasshopper Knee Joint - Torque Analysis of Actuators Using Ionic Polymer Metal Composites (IPMC) Effect of Unilateral Non-Rhythmical Stimulation on Bilateral Cerebral Cortex and Muscle Activation in People Strong and Bioactive Tri-Calcium Phosphate Scaffolds with Tube-Like Macropores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1