{"title":"Pavement crack detection based on the U-shaped fully convolutional neural network","authors":"Hanshen Chen, M. Yao, Qu Xin-yu","doi":"10.12086/OEE.2020.200036","DOIUrl":null,"url":null,"abstract":"Crack detection is one of the most important works in the system of pavement management. Cracks do not have a certain shape and the appearance of cracks usually changes drastically in different lighting conditions, making it hard to be detected by the algorithm with imagery analytics. To address these issues, we propose an effective U-shaped fully convolutional neural network called UCrackNet. First, a dropout layer is added into the skip connection to achieve better generalization. Second, pooling indices is used to reduce the shift and distortion during the up-sampling process. Third, four atrous convolutions with different dilation rates are densely connected in the bridge block, so that the receptive field of the network could cover each pixel of the whole image. In addition, multi-level fusion is introduced in the output stage to achieve better performance. Evaluations on the two public CrackTree206 and AIMCrack datasets demonstrate that the proposed method achieves high accuracy results and good generalization ability.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"47 1","pages":"200036"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.200036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Crack detection is one of the most important works in the system of pavement management. Cracks do not have a certain shape and the appearance of cracks usually changes drastically in different lighting conditions, making it hard to be detected by the algorithm with imagery analytics. To address these issues, we propose an effective U-shaped fully convolutional neural network called UCrackNet. First, a dropout layer is added into the skip connection to achieve better generalization. Second, pooling indices is used to reduce the shift and distortion during the up-sampling process. Third, four atrous convolutions with different dilation rates are densely connected in the bridge block, so that the receptive field of the network could cover each pixel of the whole image. In addition, multi-level fusion is introduced in the output stage to achieve better performance. Evaluations on the two public CrackTree206 and AIMCrack datasets demonstrate that the proposed method achieves high accuracy results and good generalization ability.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing