Selective Offloading Network Resource Optimization Approaches in Collaborative Cloud-Edge Computing Networks

Ling Liu, Ruixin Liang, Shoucui Wang, Hong Chen, M. Gao, Bowen Chen, Jinbing Wu
{"title":"Selective Offloading Network Resource Optimization Approaches in Collaborative Cloud-Edge Computing Networks","authors":"Ling Liu, Ruixin Liang, Shoucui Wang, Hong Chen, M. Gao, Bowen Chen, Jinbing Wu","doi":"10.1109/ICOCN53177.2021.9563764","DOIUrl":null,"url":null,"abstract":"With the rapid development of Internet of Things (IoT), 5G, and cloud computing, a large number of emerging applications has emerged, such as mobile payment and self-driving cars. Collaborative cloud-edge computing networks (CCECNs) is an effective way to alleviate the limitation of computing capacity by offloading complex tasks from IoT. Thus, this paper mainly proposes selective offloading network resource optimization approaches to address the offloading network resource problems for user requests in CCECNs. Simulation results show that proposed approaches can optimize network resource allocation and can reduce end-to-end (E2E) latency and blocking probability.","PeriodicalId":6756,"journal":{"name":"2021 19th International Conference on Optical Communications and Networks (ICOCN)","volume":"24 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th International Conference on Optical Communications and Networks (ICOCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCN53177.2021.9563764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the rapid development of Internet of Things (IoT), 5G, and cloud computing, a large number of emerging applications has emerged, such as mobile payment and self-driving cars. Collaborative cloud-edge computing networks (CCECNs) is an effective way to alleviate the limitation of computing capacity by offloading complex tasks from IoT. Thus, this paper mainly proposes selective offloading network resource optimization approaches to address the offloading network resource problems for user requests in CCECNs. Simulation results show that proposed approaches can optimize network resource allocation and can reduce end-to-end (E2E) latency and blocking probability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协同云边缘计算网络中选择性卸载网络资源优化方法
随着物联网(IoT)、5G、云计算的快速发展,大量新兴应用涌现,如移动支付、自动驾驶汽车等。协作式云边缘计算网络(CCECNs)是一种通过从物联网中卸载复杂任务来缓解计算能力限制的有效方法。因此,本文主要提出选择性卸载网络资源优化方法来解决ccecn中用户请求的卸载网络资源问题。仿真结果表明,该方法可以优化网络资源分配,降低端到端延迟和阻塞概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Four-channel high-speed strain measurement based on VT-DBR laser Deep Learning based Optical Network Layer Recovery Mechanism for Critical Services of Power Communication Network Study of CIGS Absorber Thickness and Gradient Bandgap effect on Device Performance Multi-wavelength thulium-doped fiber laser by using Sagnac loop mirror An InP-InGaAs-NiO p-i-n photodiode with partially depleted-absorber and depleted nonabsorbing region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1