Structural Vibration Data Anomaly Detection Based on Multiple Feature Information Using CNN-LSTM Model

Xiulin Zhang, Wensong Zhou
{"title":"Structural Vibration Data Anomaly Detection Based on Multiple Feature Information Using CNN-LSTM Model","authors":"Xiulin Zhang, Wensong Zhou","doi":"10.1155/2023/3906180","DOIUrl":null,"url":null,"abstract":"Structural health monitoring (SHM) system has been operating for a long time in a harsh environment, resulting in various abnormalities in the collected structural vibration monitoring data. Detecting these abnormal data not only requires user interaction but also is quite time-consuming. Inspired by the manual recognition process, a vibration data anomaly detection method based on the combined model of convolutional neural network (CNN) and long short-term memory (LSTM) network is proposed in this paper. This method simulates intelligent human decision making in two steps. First, the original data are reconstructed by two feature sequences with higher universality and smaller size. In the time domain, the residual signal is extracted from the upper and lower peak envelopes of the original data to characterize the symmetry of the data. In the frequency domain, the power spectral density sequence of the original data is extracted to characterize the interpretability of the data. Second, a CNN-LSTM model is constructed and trained which utilizes CNN to extract local high-level features of input sequence and inputs new continuous high-level feature representations into LSTM to learn global long-term dependencies of abnormal data features. For verification, the method was applied to the automatic classification of continuous monitoring data for 42 days of long-span bridge, and the average accuracy of the classification results exceeded 94% and the detection time was 78 minutes. Compared with existing methods, this method can detect abnormal data more accurately and efficiently and has a stronger generalization ability.","PeriodicalId":22049,"journal":{"name":"Structural Control and Health Monitoring","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control and Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3906180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Structural health monitoring (SHM) system has been operating for a long time in a harsh environment, resulting in various abnormalities in the collected structural vibration monitoring data. Detecting these abnormal data not only requires user interaction but also is quite time-consuming. Inspired by the manual recognition process, a vibration data anomaly detection method based on the combined model of convolutional neural network (CNN) and long short-term memory (LSTM) network is proposed in this paper. This method simulates intelligent human decision making in two steps. First, the original data are reconstructed by two feature sequences with higher universality and smaller size. In the time domain, the residual signal is extracted from the upper and lower peak envelopes of the original data to characterize the symmetry of the data. In the frequency domain, the power spectral density sequence of the original data is extracted to characterize the interpretability of the data. Second, a CNN-LSTM model is constructed and trained which utilizes CNN to extract local high-level features of input sequence and inputs new continuous high-level feature representations into LSTM to learn global long-term dependencies of abnormal data features. For verification, the method was applied to the automatic classification of continuous monitoring data for 42 days of long-span bridge, and the average accuracy of the classification results exceeded 94% and the detection time was 78 minutes. Compared with existing methods, this method can detect abnormal data more accurately and efficiently and has a stronger generalization ability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN-LSTM模型的多特征信息结构振动数据异常检测
结构健康监测系统长期在恶劣环境下运行,采集到的结构振动监测数据存在各种异常。检测这些异常数据不仅需要用户交互,而且相当耗时。受人工识别过程的启发,提出了一种基于卷积神经网络(CNN)和长短期记忆(LSTM)网络组合模型的振动数据异常检测方法。该方法分两步模拟人类的智能决策。首先,用两个具有较高通用性和较小尺寸的特征序列重构原始数据;在时域中,从原始数据的上下峰包络中提取残差信号来表征数据的对称性。在频域,提取原始数据的功率谱密度序列来表征数据的可解释性。其次,构建并训练CNN-LSTM模型,利用CNN提取输入序列的局部高级特征,将新的连续高级特征表示输入到LSTM中,学习异常数据特征的全局长期依赖关系。为验证,将该方法应用于某大跨度桥梁42天连续监测数据的自动分类,分类结果平均准确率超过94%,检测时间为78分钟。与现有方法相比,该方法能够更准确、高效地检测异常数据,具有更强的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Damage Detection and Localization at the Jacket Support of an Offshore Wind Turbine Using Transformer Models A Model-Based Bayesian Inference Approach for On-Board Monitoring of Rail Roughness Profiles: Application on Field Measurement Data of the Swiss Federal Railways Network Correction of Misalignment Errors in the Integrated GNSS and Accelerometer System for Structural Displacement Monitoring Mitigation of In-Plane Vibrations in Large-Scale Wind Turbine Blades with a Track Tuned Mass Damper Vortex-Induced Force Identification of a Long-Span Bridge Based on Field Measurement Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1