High-level and generic models for visual search: When does high level knowledge help?

A. Yuille, J. Coughlan
{"title":"High-level and generic models for visual search: When does high level knowledge help?","authors":"A. Yuille, J. Coughlan","doi":"10.1109/CVPR.1999.784990","DOIUrl":null,"url":null,"abstract":"We analyze the problem of detecting a road target in background clutter and investigate the amount of prior (i.e. target specific) knowledge needed to perform this search task. The problem is formulated in terms of Bayesian inference and we define a Bayesian ensemble of problem instances. This formulation implies that the performance measures of different models depend on order parameters which characterize the problem. This demonstrates that if there is little clutter then only weak knowledge about the target is required in order to detect the target. However at a critical value of the order parameters there is a phase transition and it becomes effectively impossible to detect the target unless high-level target specific knowledge is used. These phase transitions determine different regimes within which different search strategies will be effective. These results have implications for bottom-up and top-down theories of vision.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"46 1","pages":"631-637 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We analyze the problem of detecting a road target in background clutter and investigate the amount of prior (i.e. target specific) knowledge needed to perform this search task. The problem is formulated in terms of Bayesian inference and we define a Bayesian ensemble of problem instances. This formulation implies that the performance measures of different models depend on order parameters which characterize the problem. This demonstrates that if there is little clutter then only weak knowledge about the target is required in order to detect the target. However at a critical value of the order parameters there is a phase transition and it becomes effectively impossible to detect the target unless high-level target specific knowledge is used. These phase transitions determine different regimes within which different search strategies will be effective. These results have implications for bottom-up and top-down theories of vision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可视化搜索的高级和通用模型:高级知识何时有帮助?
我们分析了在背景杂波中检测道路目标的问题,并研究了执行该搜索任务所需的先验(即目标特定)知识的数量。该问题用贝叶斯推理来表述,并定义了一个问题实例的贝叶斯集合。这个公式意味着不同模型的性能度量取决于表征问题的顺序参数。这表明,如果杂波很小,那么检测目标只需要对目标有微弱的了解。然而,在阶参数的临界值处存在相变,除非使用高水平的目标特定知识,否则无法有效地检测目标。这些相变决定了不同的搜索策略在其中是有效的。这些结果对自下而上和自上而下的视觉理论具有启示意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1