Sugato Ghosh, S. Chatterjee, A. Kundu, S. Maity, H. Saha
{"title":"Thermal analysis of cantilever MEMS based Low power microheater array for the selective detection of explosive and toxic gases","authors":"Sugato Ghosh, S. Chatterjee, A. Kundu, S. Maity, H. Saha","doi":"10.1109/ISPTS.2012.6260949","DOIUrl":null,"url":null,"abstract":"A cantilever type microheater array consisting of four individual isolated microheaters on single die has been designed here for MEMS based gas sensor platform using metal oxide semiconductor for different gas detection through a single sensor die for explosive and toxic gas analysis in the underground manhole. A thin SiO2/Si3N4 cantilever of 250µn X 100µn has been designed here for low power consumption and uniform temperature distribution throughout the entire active area. As the microheaters are isolated from each other, different temperatures may be achieved by applying different voltages in different heaters.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"3 1","pages":"290-293"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2012.6260949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
A cantilever type microheater array consisting of four individual isolated microheaters on single die has been designed here for MEMS based gas sensor platform using metal oxide semiconductor for different gas detection through a single sensor die for explosive and toxic gas analysis in the underground manhole. A thin SiO2/Si3N4 cantilever of 250µn X 100µn has been designed here for low power consumption and uniform temperature distribution throughout the entire active area. As the microheaters are isolated from each other, different temperatures may be achieved by applying different voltages in different heaters.
针对基于金属氧化物半导体的MEMS气体传感器平台,设计了一种由4个独立微加热器组成的悬臂式微加热器阵列,通过单个传感器模块对井下爆炸和有毒气体进行检测。在这里设计了250µn X 100µn的薄SiO2/Si3N4悬臂梁,在整个活动区域内具有低功耗和均匀的温度分布。由于微加热器彼此隔离,在不同的加热器上施加不同的电压可以达到不同的温度。