A. V. Radogna, S. Capone, L. Francioso, P. Siciliano, S. D’Amico
{"title":"A Flexible Data Acquisition System for Aerospace Applications","authors":"A. V. Radogna, S. Capone, L. Francioso, P. Siciliano, S. D’Amico","doi":"10.1109/ICICDT51558.2021.9626485","DOIUrl":null,"url":null,"abstract":"This paper presents a flexible data acquisition (DAQ) system targeted to aerospace applications. The system is able to acquire raw signals from resistive, capacitive and digital/pulsed output sensors. The flexibility in the read-out capability is made possible thanks to: (1) the adoption of an integrated analog front-end (AFE) circuit for the generic interfacing of resistive and capacitive sensors; (2) the adoption of the same time-to-digital conversion approach for all the connected sensors. The AFE implements the resistance/capacitance-to-time conversion by generating a square wave, whose period is proportional to resistance or capacitance values. The time-to-digital conversion is made by the timer peripheral of a generic microcontroller board, thus avoiding the analog-to-digital converter (ADC). The architecture of the proposed DAQ system is presented and the design of the AFE circuit is detailed with emphasis on the energy-per-measurement (EpM) performance. As an example of operation, a demonstrator with two NTC thermistors and an Hall effect sensor, is made and measurement results are shown.","PeriodicalId":6737,"journal":{"name":"2021 International Conference on IC Design and Technology (ICICDT)","volume":"17 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on IC Design and Technology (ICICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT51558.2021.9626485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a flexible data acquisition (DAQ) system targeted to aerospace applications. The system is able to acquire raw signals from resistive, capacitive and digital/pulsed output sensors. The flexibility in the read-out capability is made possible thanks to: (1) the adoption of an integrated analog front-end (AFE) circuit for the generic interfacing of resistive and capacitive sensors; (2) the adoption of the same time-to-digital conversion approach for all the connected sensors. The AFE implements the resistance/capacitance-to-time conversion by generating a square wave, whose period is proportional to resistance or capacitance values. The time-to-digital conversion is made by the timer peripheral of a generic microcontroller board, thus avoiding the analog-to-digital converter (ADC). The architecture of the proposed DAQ system is presented and the design of the AFE circuit is detailed with emphasis on the energy-per-measurement (EpM) performance. As an example of operation, a demonstrator with two NTC thermistors and an Hall effect sensor, is made and measurement results are shown.