Energy Management of Hydrogen-Storage Photovoltaic Generation System with a Function of Suppressing Short-Period Components

Y. Machida, Akihisa Goto, A. Takahashi, S. Funabiki
{"title":"Energy Management of Hydrogen-Storage Photovoltaic Generation System with a Function of Suppressing Short-Period Components","authors":"Y. Machida, Akihisa Goto, A. Takahashi, S. Funabiki","doi":"10.23919/IPEC.2018.8507572","DOIUrl":null,"url":null,"abstract":"The output power of photovoltaic generation (PV) systems changes with the variation in the solar irradiance and temperature of the PV panel surface. The change in output power influences the power quality of the power system. Therefore, a PV system with an electrolyzer (ELY) is proposed to prevent the degradation of the power quality. The proposed system converts the fluctuating components in the PV power fluctuations into hydrogen, which is supplied to fuel cell vehicles. To realize a stable hydrogen supply chain, it is necessary to manage the hydrogen produced by the ELY. This paper proposes a novel method for energy management of a hydrogen-storage PV system with a function of suppressing the short-period components in the PV power. It is verified that the proposed energy management method is effective for reducing the fluctuations of the PV power and the establishment of a hydrogen supply chain.","PeriodicalId":6610,"journal":{"name":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","volume":"62 1","pages":"2449-2455"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IPEC.2018.8507572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The output power of photovoltaic generation (PV) systems changes with the variation in the solar irradiance and temperature of the PV panel surface. The change in output power influences the power quality of the power system. Therefore, a PV system with an electrolyzer (ELY) is proposed to prevent the degradation of the power quality. The proposed system converts the fluctuating components in the PV power fluctuations into hydrogen, which is supplied to fuel cell vehicles. To realize a stable hydrogen supply chain, it is necessary to manage the hydrogen produced by the ELY. This paper proposes a novel method for energy management of a hydrogen-storage PV system with a function of suppressing the short-period components in the PV power. It is verified that the proposed energy management method is effective for reducing the fluctuations of the PV power and the establishment of a hydrogen supply chain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有短周期抑制功能的储氢光伏发电系统能量管理
光伏发电系统的输出功率随太阳辐照度和光伏板表面温度的变化而变化。输出功率的变化影响着电力系统的电能质量。因此,为了防止电能质量的下降,提出了一种带有电解槽(ELY)的光伏系统。该系统将光伏发电波动中的波动成分转化为氢气,供燃料电池汽车使用。为了实现稳定的氢供应链,有必要对电动汽车生产的氢进行管理。本文提出了一种具有抑制光伏电源短周期组件功能的储氢光伏系统能量管理新方法。验证了所提出的能量管理方法对于减少光伏发电波动和建立氢供应链是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flying Capacitor Resonant Pole Inverter with Direct Inductor Current Feedback Comparative Study of Single-Phase Fundamental Component Frequency Estimation Schemes under Time-varying Harmonic Distortion Operation Magnet Arrangement suitable for Large Air Gap Length in Linear PM Vernier Motor Fall Prevention and Vibration Suppression of Wheelchair Using Rider Motion State New Module with Isolated Half Bridge or Isolated Full Bridge for Modular Medium voltage converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1