Answering why-not questions on metric probabilistic range queries

Lu Chen, Yunjun Gao, Kai Wang, Christian S. Jensen, Gang Chen
{"title":"Answering why-not questions on metric probabilistic range queries","authors":"Lu Chen, Yunjun Gao, Kai Wang, Christian S. Jensen, Gang Chen","doi":"10.1109/ICDE.2016.7498288","DOIUrl":null,"url":null,"abstract":"Metric probabilistic range queries (MPRQ) have received substantial attention due to their utility in multimedia and text retrieval, decision making, etc. Existing MPRQ studies generally aim to improve query efficiency and resource usage. In contrast, we define and offer solutions to why-not questions on MPRQ. Given an original metric probabilistic range query and a why-not set W of uncertain objects that are absent from the query result, a why-not question on MPRQ explains why the uncertain objects in W do not appear in the query result, and provides refinements of the original query and/or W with the minimal penalty, so that the uncertain objects in W appear in the result of the refined query. Specifically, we propose a framework that consists of three efficient solutions, one that modifies the original query, one that modifies the why-not set, and one that modifies both the original query and the why-not set. Extensive experiments using both real and synthetic data sets offer insights into the properties of the proposed algorithms, and show that they are effective and efficient.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"57 1","pages":"767-778"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Metric probabilistic range queries (MPRQ) have received substantial attention due to their utility in multimedia and text retrieval, decision making, etc. Existing MPRQ studies generally aim to improve query efficiency and resource usage. In contrast, we define and offer solutions to why-not questions on MPRQ. Given an original metric probabilistic range query and a why-not set W of uncertain objects that are absent from the query result, a why-not question on MPRQ explains why the uncertain objects in W do not appear in the query result, and provides refinements of the original query and/or W with the minimal penalty, so that the uncertain objects in W appear in the result of the refined query. Specifically, we propose a framework that consists of three efficient solutions, one that modifies the original query, one that modifies the why-not set, and one that modifies both the original query and the why-not set. Extensive experiments using both real and synthetic data sets offer insights into the properties of the proposed algorithms, and show that they are effective and efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回答关于度量概率范围查询的why-not问题
度量概率范围查询(MPRQ)由于在多媒体和文本检索、决策等方面的应用而受到了广泛的关注。现有的MPRQ研究一般以提高查询效率和资源利用率为目标。相反,我们定义并提供解决MPRQ中“为什么不”问题的方法。给定一个原始度量概率范围查询和查询结果中不确定对象的why-not集合W, MPRQ上的why-not问题解释了为什么W中的不确定对象没有出现在查询结果中,并以最小的惩罚对原始查询和/或W进行改进,使W中的不确定对象出现在改进后的查询结果中。具体来说,我们提出了一个由三个有效解决方案组成的框架,一个修改原始查询,一个修改为什么不设置,另一个修改原始查询和为什么不设置。使用真实和合成数据集的大量实验提供了对所提出算法特性的见解,并表明它们是有效和高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1