Xueting Zhao, Kun Zhang, Ji Qi, Peng Liu, Zhao Zhang, Lin Qu, Zhidong Zhang, Bing Li
{"title":"Low-pressure-driven barocaloric effects at colinear-to-triangular antiferromagnetic transitions in Mn3-xPt1+x","authors":"Xueting Zhao, Kun Zhang, Ji Qi, Peng Liu, Zhao Zhang, Lin Qu, Zhidong Zhang, Bing Li","doi":"10.20517/microstructures.2022.46","DOIUrl":null,"url":null,"abstract":"A large driving pressure is required for barocaloric effects (BCEs) in intermetallics, usually above 100 MPa. Here, we report barocaloric effects in Mn3-xPt1+xalloys saturated at about 60 MPa, the lowest pressure reported in intermetallics to date. A first-order phase transition occurs from the colinear antiferromagnetic phase to the triangular antiferromagnetic phase as temperature decreases. The transition temperature strongly depends on the composition x, ranging from 331 K for x = 0.18 to 384 K for x = 0.04, and is sensitive to pressure, with dTt/dP up to 139 K/GPa. However, the maximum pressure-induced entropy changes are as small as 13.79 J kg-1 K-1, attributed to the mutual cancellation of lattice and magnetic entropy changes. The small driving pressure and total entropy changes are due to the special magnetic geometric frustration.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2022.46","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
A large driving pressure is required for barocaloric effects (BCEs) in intermetallics, usually above 100 MPa. Here, we report barocaloric effects in Mn3-xPt1+xalloys saturated at about 60 MPa, the lowest pressure reported in intermetallics to date. A first-order phase transition occurs from the colinear antiferromagnetic phase to the triangular antiferromagnetic phase as temperature decreases. The transition temperature strongly depends on the composition x, ranging from 331 K for x = 0.18 to 384 K for x = 0.04, and is sensitive to pressure, with dTt/dP up to 139 K/GPa. However, the maximum pressure-induced entropy changes are as small as 13.79 J kg-1 K-1, attributed to the mutual cancellation of lattice and magnetic entropy changes. The small driving pressure and total entropy changes are due to the special magnetic geometric frustration.
期刊介绍:
Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover:
• Novel micro and nanostructures
• Nanomaterials (nanowires, nanodots, 2D materials ) and devices
• Synthetic heterostructures
• Plasmonics
• Micro and nano-defects in materials (semiconductor, metal and insulators)
• Surfaces and interfaces of thin films
In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board.
Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4